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GENERAL INTRODUCTION AND SUMMARY

This final report discusses the work accomplished over the past four years on
segregation c¢ffects. The past year, Lthis program was partially supported under NASA
contract NAS 8-27891, "Segregation Effects During Solidification in Weightless Melts. "

The contract covered the period from January 1, 1972 to December 31, 1972.

Two types of melt segregation effcets were studied: evaporative segregation, or
segregation due to surface evaporation; and freezing segregation, or segregation due to

liquid-solid phase transformation.

These segregation effects are close., related. In fact, evaporative segregation
always precedes freezing segregation to some degree and must often he studied prior to
performing meaningful solidification experiments. This is particularly true since
evaporation may cause the melt composition, at least at the critical surface regions or
layers to he affected manyfold within seconds so that the surface re.gion or layer melting
point and cther thermophysical properties, nucleation characteristics, base for under-
cooling, and critical velocity to avoid constitutional supercooling, may be completely

unexpected.

An important objective was, therefore, to develop the necessary '"normal evapor-
ation equations" for predicting the compositional changes within specified times at tem-
perature and to correlate these equations with actuwl experimental data collected from
the literature. An evaporative congruent temperature (or equi-evaporative temperature)
was then defined and listed for various binary or ternary alloys. The application of this
unique temperature in explaining, predicting, or planning "anomalous' evaporative or
constitational melting (on cooling) or solidification (on heating) experiments were dis-
cussed. We then computed the reactive jetting forces due to surface evaporation and,
in particular, showed that these forces can be very substantial on a differentially heated
csample and may completely destroy the unique zero-gravity environment in space manu-
facturing. In addition, these jetting forces may initiate surface deformation and vibration
or other fluid disturbances, and may even produce new types of important convection

currents probably never anticipated. These studies also showed which sample materials
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are preferable and which to avoid, and what impurities are effective as stabilizing
influences. The relation between normal evaporation and normal freezing was then
considered. Finally, applications of evaporation to space manufacturing concerning
material loss and dimensional control, compositional changes, evaporatiie purification,
surface cooling, materials standards, and freezing data interpretation were briefly
described.

In the area of segregation due to solidification, we started with an explanation of
the normal freezing process and its successful use in the semiconductor industry.
Various constitutional diagrams demonstrated the desirability of using non-constant
segregation coefficient techniques in metallurgical studies. We then stated the basic normal
freezing differential equation, together with its solutions for cases w*ere the liquidus and
solidus are quadratic, cubic, high-degree polynomial, and exponential functions of the melt
temperature. The meaning of constant segregation coefficient was discussed, together
with the associated errors due to curvatures of the liquidus and solidus lines and the
best value of coastant segregation coefficient for a given solidification experiment.
Numerical methods for computing the normal freezing behavior were then given. Finally
and as an example, the steady state solidification of the Ni-Sn system under conditions of

limited liquid diffusion and non-constant segregation coefficients was descrihed.

The report ends with some suggestions for future work.

> - Lol | "
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EVAPORATIVE SEGREGATION

- Section 1. INTRODUCTION

- In normal evaporation, we assume that the evaporzting alloy is always homogeneous
. in composition, that the vapor is instantly removed, aud that the alloy follows Raoult's

3

1. law (Dushman 1962). Such conditions exist or are approached in an induction-stirred,

. melt-in-vacuum, or liguid drop-in-space.

We deal here mainly with the normal evaporation of binary alloys. i« particular,
- we study the evaporative segregation patterns, i.e., the type and degree of enrichment
or depletion of solute in the evaporating source at different evaporation temperatures and

times.

Normal evaporation is important in space melting and solidification for the following

reasons:

4

e Significant evaporation of alloy components always occurs at high temperatures

wa
i winesd

[ LRI |

in space vacuum environments

L

e High-temperature evaporation of alloys is generally a neglected area of

-
PR

systematic research. Yet, unless the complete evaporative segregation
behavior is understood and analyzed, solidification and its related segregation
effects may not be properly studied because of ill-defined initial conditions.

I Before the liquid alloy can be controllably solidified or even melted, there is

d

TR T e g

invariably some surface evaporation to cause changes in composition, freezing
temperature, supercooling characteristics, nucleation and growth morphology

conditions, and the like

e Controlled space evaporation probably most closely ments the requirements

of normal evaporation. We may thus be able to obtain material purity or

properties such as heat of evaporation, activity coefficients, sticking

1
l evaporation standards, thermal properties, or even basic thermodynamic
l 1-1
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coefficients, etc., that are difficult or impossible to obtain on earth

Normal evaporation is a much simpler process than normal freezing,
since the former does not involve such complicated phenomena as
nucleation, phase transformation, and constitutional or nonconstitutional
supercooling. Thus in normal evaporation we may, for specific geo-
metries or alloy systems, ideally isolate and investigate such other
phenomena as heat conduction or radiation, liquid or solid diffusion,
fluid dynamics, and convection currents. Exact knowledge of these

phenomena is necessary to understand solidification

Evaporation causes surface cooling due to the heat of evaporation. This

evaporative cooling effect is particularly important in low-melting materials

Different rates of evaporation at various surface regions give rise to
unbalanced forces and momcnta that niay produce erratic or unwanted
accelerations, surface distortions and vibrations, exceedingly large

"equivalent gravities", and possibly new types of powerful convection

currents in zero-gravity conditions, as will be discussed later

Evaporation may cause the surface composition of certain unwanted or
unsuspected impurities to be increased a thousandfold or millionfold

within seconds so that the layer's melting point and other thermophysical
properties, nucleation characteristics, base for undercooling, and critical
velocity to avoid constitutional supercooling, may be completely unexpected.
In fact, anomalous "constitutional' or evaporative melting on cooling, or

solidification on heating, is possible because of surface evaporation

1-2
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Section 2. DIFFERENTIAL EQUATION OF NORMAL EVAPORATION

Zinsmeister (1964) and Li (1966) gave the exact equation for the normal evaporation
of binary alloys. This equation, relating the concentration m of the solute in the

evaporating alloy at time t, when the mole fraction of the alloy remaining is F, is

UV /1-m \ U-V
el N (m\ TV mo) @
N |m 1-m

where N and No are, respectively, the number of moles of both solvent and solute at

evaporating times t =t and t = 0; m is the initial molar concentration of the evapcrating

alloy; and U and V are, respectively, the evaporation rate of pure solute and solvent.

. 2
The evaporation rates in mol/m /sec fo; pure solute and solvent are

Au-Bu/T n
U=K10 (MuT) 2 (2)
and
AV—BV‘}/T _l
V=KI10 (M_T) 2 (3)

where K = 5.833 x 10_9 a, @ =1 for most metals (Dushman 1962); Mu and Mv are,
respectively, the molecular weights of the solute and solvent atoms; T is the evaporating
temperature in degrees Kelvin; and Au and Bu or Av and Bv are evaporating constants for
the solute or solvent. Table 1-1 gives the values of the constants A and B for 51 different
elements, as given by Dushman (1962). Data on the melting point and density of these

elements were obtained from Smithell (1967).

1-3
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TABLE 1-1 EVAPORATING CONSTANTS FOR 51 CHEMICAL ELEMENTS

Element A B/1000 At. Wt Melting Pt Density
K
Ag 11.85 14.27 107.9 1234 10.5
Al 11.79 15.94 26.98 933.3 2.7
Au 11.89 17.58 197.0 1336 19.3
B 13.07 29.62 10.82 2300 2.34
Ba 10.70 8.76 137.4 977.1 3.5
Be 12.01 16.47 9.013 1556 1.848
Bi 11.18 9.53 209.0 544.1 9.8
o 15.73 40.03 12.01 3973 2.25
Ca 11.22 8.94 40. 08 1123 1.54
Cb 14.37 40.40 92.91 2688 8.57
cd 11.56 5.72 112.4 594.1 8.64
Ce 13.74 20,10 140.1 1077 6.75
Co 12.70 21.11 58.94 1765 8.9
Cr 12.94 20. 00 52. 01 2176 7.1
Cs 9.91 3.80 132.9 301.8 1.87
Cu 11.96 16.98 63.54 1356 8.96
Fe 12.44 19.97 55.85 1812 7.87
Ga 11.41 13.84 69.72 302.8 5.91
Ge 11.71 18.03 72.60 1210 5.32
; In 11.23 12.4R 114.8 429.7 7.3
. Ir 13. 07 31.23 192.2 2716 22.4
: 3 10.28 4.48 39.10 336. 3 86
& La 11.60 20.85 138.9 1103 6.19
; Li 10.99 8.07 6.94 459.17 .534
; Mg 11.64 7.65 24.32 924 1.74
: Mn 12.14 13.74 54.94 1517 7.4
; Mo 11.64 30.85 95.95 2883 10.2
: Na 10.72 5.49 22.99 371 .97
3 i Ni 12.75 20.96 58.71 1726 8.9
H Os 13.59 37.00 190.2 2970 22.5
i b 10.77 9.71 207.2 600. 6 11.68
} Pd 11.78 19.71 106. 7 1825 12.
! Pt 12.53 27.28 195.1 2045 21.45
: Rb 10.11 4.08 85.48 312.1 1.53
Rh 12.94 27.72 102.9 2239 12.4
Ru 13.50 33.80 101.1 2700 12.2
Sb 2 11.15 8.63 243.5 903. 7 6.68
Sc 11.94 18.57 44.96 1673 2.99
Si 12.72 21.30 28. 09 1685 2.34
i
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TABLE 1-1 EVAPORATING CONSTANTS FOR 51 CHEMICAL ELEMENTS (Continued)

LR - " .2 =4

: Element A B/1000 At. Wt Melting Pt Density
s K
H
/ Sn 10.88 14.87 118.7 505 7.3
e Sr 10.71 7.83 87.63 1033 2.6
2 Ta 13.04 40.21 180.9 3270 16.6
_ Th 12.52 28.44 232.0 1968 11.85
. Ti 12.50 23.23 47.90 1941 4.5
7' Tl 11.07 8.96 204.4 576.8 11.85
R U 11.59 23.31 238.1 1406 19.97
) A% 13.07 25.72 50.95 2290 6.1
w 12.40 40.68 183.9 3653 19.3
Y 12.43 21.97 88.91 1773 4.47
Zn 11.63 6.56 69. 38 692.6 7.14
Zr 12.33 30.26 91.22 2130 6.49
Differentiating Eq (1) yields
A
_(U-V)m{l-m) 4
dm [mU+(1-m)V]N dN ()
but
dN = - [mU+(1-m)V] A dt (5)
: where A is the evaporating area of the alloy, assumed constant here.
] Substituting Eq (5) into Eq (4) results in
: o R
3 . dt =Gm " (1-m) dm (6)

where N (1-m )q+2
0 0

O o g
A(U-V)m

-,
]
s

+ shglt o)

: . @ = (2V-U)/U-V) (8)
@ ; & = (V-2U)/(U-V) (9)
Ly
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2.1 EVAPORATING RATES AND EVAPORATIVE SEGREGATION COEFFICIENT
The evaporating rates of elements, being exponential functions of the evaporating

temperature as shown in Eq (2) and (3), are strongly temperature-dependeni. At the

15 14

melting point of nickel, i.e., 1726K, these rates vary from 1. 30 x 10 , 1.05 x 10~

1.25 x 10-13, 1.68x 10_12, and 2.76 x 10-13 Kg/mz/sec respectively, for W, Ta, Cb,
C, and Os to 26,200, 8270, 7670, 7240, 4250, 2330, and 1120 Kg/mz,’sec for Cd, Cu,
Zn, Rb, K, Na, and Mg. The molar evaporating rates vary from 7.11 x 10‘15,

5.57 x 10"14, 1.35 x 10‘12, 1.45 x 10"11, and 1.40 x 10 % moles/m?/sec respectively
for W, Ta, Cb, Os, and Cto 2.34 x 105, 1.31 x 105, 1.17 x 105, 1.09 x 105, 1.00 x 105,
8.5 x 104 moles/mz/sec for Cd, Cu, Zn, K, Na, and Rb. The evaporating rates can alsc
be expressed in terms of the velocity of interfacial movement in m/sec, i.e., from

6.74 x 10'16, 6.31 x 10'15, 1.36 x 10‘13, 1.23 x 10’12, and 7.45 x 10”12 respectively
for W, Ta, Cb, Os, and C to 4.96 x 106, 4.72 x 106, 3.03 x 106, 2.40 x 106, 1.07 x 106,
9.25 x 1()5 for K, Rb, Cd, Na, Zn, and Cu. For the solvent nickel in nickel alloys, the

4 2 -
Kg/m /sec, 7.42 x 10 3 moles/mz/sec, and

evaporating rates at 1726K are 4.35 x 10
-8
4.89x10 " m/sec (or 489 A/sec). Note that the evaporating ratcs of the various solute

elements in nickel generally vary by many orders of magnitude.

When the solute concentration in the evaporating alloy is m mole fraction, the
solute concentration of the, vapor is mU/[mU+(1-m)V] , where V and U are, as defined i
previously, the molar evaporating rates of the solvent and solute, respectively. The

evaporative segregation coefficient kv is, therefore,
k, = U/[mU+(1-m)V]

which varies with m and U and V and, hence, the evaporating temperature T.

Since U and V are generally widely different, we have the following two usual cases:
e U>»V: kV =1/m, i.e., the evaporative segregation coefficient depends only

on m, but not on T.

e For the more important case of U >>V, in which the solute may be concentrated

manyfold on the surface,

1-6 {
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If, in addition to U <<V, m is small, i.e., m <<1, kv = U/V = constant

at a given T.

TlLus, for small, particularly trace, amount of low-evaporative impurities or

solutes in nickel alloys evaporating at 1724K, the evaporating segregation coefficient
- -10 -9

12, 1.29 x 10 11, 2.78 x 10} , 2.51 x10 °, and

kV =U/V canbe as small as 1.38 x 10~
1.53x 10™° for W, Ta, Cb, Os, and C, respectively.

For highly evaporative impurities (relative to nickel), the evaporative segregation

coefficient at 1726K is

kv =1/mforU>V

which can be very large for small values of m. Thus, if m = 10-6 or 10-9, the instan-
taneous evaporative segregation coefficient is 106 or 109. Since U >>V, m is rapidly
decreasing. Hence, the evaporative segregation coefficient may rapidly decrease by
many orders of magnitude within a single experimental run, even for the samc impurity,

when U >> V.
2.2 SPECIAL CASE SOLUTIONS OF THE NORMAL EVAPORATION EQUATION

Equations (6) - (9) enable us to determine the evaporating time, t, for an evapor-
ating alloy to reach a specific solute concentration, m. Unfortunately, these equations
are not exactly solvable in the general case. All of the following special and important

cases, (except Case V), however, are solvable in closed forms.

Case I: The solute is much more evaporative than the solvent, i.e., U>>V;
or ¢ - -1 and B=-2. In this case

Gldm
dt, = ——— (10)

m(l-m)4

1-7
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where
N (1-m)
o 0

1 AU

and the evaporating time is:

(1-mo)m m-mo
G1 [/ +

t, = n (11)
1 mo(l m) (1 mo) (1-m)
In terms of the initial and final weight fractions of the solute in the evaporating
alloy, W and w respectively, the evaporating time can be shown to be:
N (l-WO)W ) W-WO MU 1
1 11" Wo(l-W) (1-W) (l-Wo) ) MU

For given m and evaporating temperature T or evapeorating rate U, the evaporation

constant G] is proportional to NO/A. For a dilute evaporating alloy in spherical form of

diameter d, density p, and weight W, G, is proportional to dp/W. Hence, for dilute

1
alloys and given initial and final conditions, the evaporatimg time is directly proportional

to the diameter d of the evaporating source.

When m ~ m the second te:'m in the bracket in Eq. 11 (or 11a) may be nearly 0.

The evaporation time for this first case, t,, is then a logarithmic function of m (or w),

1
as has been experimentally observed (see e.g., Tefelske and Chang 1972).

Also, when m ~ m. o~ 0,
N0 Mo
tl ol ﬁ tn o (12)

When, however, m ~ m 1, the logarithmic term in Eq 11 or 11a may be small.

The evaporating time t, is then approximately linearly related to the final solute con-

1
centration (m or w) in the source.

Case II: The solvent is much more evaporative than the solute, i.e., V> U; or

o=-2and 8 = -1. In this case

1-8
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szm
dt2 = ————"—? (13)
(1-m)m
where
moNo
Gy ="av
and
(l-mo)m m-mO
t2 - G2 fn mo(l—m) * mom 14)

In terms of weight fractions
(1-WO)W W-W0

M
t, =G -

Mu 4
T W_(1-W) * WW My (14a)

For the initial stages of evaporation, i.e., m ~ m t also becomes a logarithmic

2

function of m, as has been observed. On the other hand, when m ~ m0 ~ 0, t2 may be
approximately linearly related to 1/m.
Case lll: o= (2V-U)/(U-V)=0, i.e., U=2Vand A =-3
-2 -2
t3 —Gr3 [(l—m) -(l-mo) -l i19)
where 2
N (1-m )
G =-—2__9
3 2AVm
o
Case lV: g=(V-2U)/(U-V) =0, i.e., V=2U and 4 = -3. In this case
~2 -2
t4—G4(m -mo ) (16)
where 2
N m
o 0

Gy=- 2AU(-m,)

1-9
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Equations (15) and (16) show that under some conditions, the evaporating time,
t, is better represented by linear functions of (1--m)-2 or m_2 than by logarithmic

functions of m.

Case V: For relatively dilute alloys, i.e., m and 8 m <<1, the following solution

by series expansion can be obtained from Eq (6):

2 i
8m i (AN
dt5=qu1—am+ 21) + e t(-1) Li—!-l-+...]dm 17
and
a+l a+l at+2 a+2 a+i+l _ a1+l
o m -m0 m —m0 - . ) m m0 gi 5)
5 a+1 R (@+i+1)i!

- . .th
For computer calculations, it is desirable to know the ratio of the 1t term to the

(i-1 )th term. Thus,

atitl X ati +1)
-1l
- (¢]

T +i +i
i-1 i (g+i+1) (m“ b mz 1)

Ti B(axtl) (m

(19)

which is generally less than gm/i or smo/i.
Because Bm << 1 and i constantly increases with each additional term, this series
converges rapidly unless 8 is very large, i.e., unless U =V, which leads to Case VI.

Case VI: The solute and solvent are evaporating at equal rates, i.e., U=V. In

this case, we would expect

m = mo for all t . (20)
There is, then, no evaporative segregation, i.e., there is neither solute enrichment nor
depletion in the evaporating source.

For any pair of solvent and solute, there is a unique temperature, Ts, at which
U =V and, hence, the alloy concentration remains stable or constant. From Eq (2) and

(3),

1-10
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Te=7a -a - 0.5 log(M /M ) (21)
u \' u A%

This unique "equi-evaporative, or evaporative congruent, temperature’ Ts has

some important implications and applications, as will be shown.

Case VII: With extremely dilute alloys, i.e., m ~ m ~ 0, vve have (Li, 196+)
F=N/N_=(m/m)*"! (22)
) 0

Hence,
No a+I]
t7 = KV 1- (m/mo) (23)

2.3 EXAMPLES OF COMPUTATION

A generalized computer program has been written to analyze the evaporative seg-
regation pattern (i.e., type and degree), based on the equations given above, on various
potential aerospace materials suitable for space experiments. Computations have been
made that give the maximum allowable time (often less than a minute or second) for space
experiments without mater:al loss or compositional changes of a specificd amount for

various solute elements in nickel, iron, or other alloys.
2.3.1 Nickel Alloys

Several nickel alloys have been selected for the M512 Skylab experiments. As an
example of the use of the various derived equations, the evapcration behavior of an alloy
containing 8% by weight of Al in Ni at the melting point of pure Ni (i.e., 1726K) is com-
puted. Here, the solute ele'aent (Al) is comparatively highly evaporative relative to

the solvent (Ni). Equation (11) therefore applies, and the time, t_, to reach a final

solute concentration m from a specified initial concentration m, ils directly pro-
portional to NOA/U (in the Gl constant). Table 1-2 gives the times tu reach various
final Al concentrations for one mole (5.367 x 10-2Kg) of the 8% Al in Ni alloy

(mo = 0.159) evaporating at 1726K (the melting point of Ni) from its (supposedly

- 2
constant) 10 8 m surface.
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TABLE 1-2 NORMAL EVAPORATION OF 8% BY WEIGHT ALUMINUM
IN NICKEL AT 1726K

Evaporation Time,

Final Solute Concentration

Alloy Remaining

Sec Weight Fraction | Mole Fraction Weight, Kg Mole
0. 0. 080 0.159] 5.366 x 10:2 1.0000
28.3 0.078 0.1555 5.353 %10 , | 0.9955
57.1 0.076 0.1518 5.341 <10 , | 0.9910
86.5 0.074 0.1481 5.328 210 , | 0.9865
117 0.072 0.1444 5.315x10 . | 0.9820
147 0. 070 0.1407 5.303x10_, | 0.9775
179 0. 068 0.1370 5,290~ 10 . | 0.9731
211 0. 066 0.1333 5.2 7 0_, | 0.9686
244 0. 064 0.1295 5.2 0o | 0.9542
277 0. 062 0.1258 5.25 g | 0-9598
312 9. 060 0.1220 5.240x10 . | 0.9554
347 0.058 0.1182 5.227x10_, | 0.9510
384 0. 056 0.1143 5.214 x10_, | 0.9467
421 0. 054 0.1105 5.202x10 . | 0.9423
460 0. 052 0.1066 5.189 x 10_, | 0.9379
500 0. 050 0.1028 5.177x10_, | 0.9336
542 0.048 0. 0989 5.164x10_, | 0.9292
584 0. 046 0. 0950 5.152x 10 0. 9249
629 0. 044 0.0810 5.139 x10_, | 0.9206
675 0. 042 0.0871 5.126 x 10 | 0.9163
723 0. 040 0. 0831 5.114x10 5 | 0.9120
774 0.038 0. 0792 5.101x10_. | 0.9076
827 0. 036 0,0752 5.088x10 . | 0.9033
882 0. 034 0,0711 5.075 x10_, | 0.8990
940 0. 032 0.0671 5.062x10 | 0.8947
1000 0. 030 0. 0631 5.049 x10 o | 0.8904
1070 0. 028 0. 0590 5.036 x10 , | 0.8860
1130 0.026 0.0549 5.023 x 10_, 0.8817
1210 0. 024 0. 0508 5.009x10 . | 0.8773
1290 0. 022 0. 0467 4.996x10 ;[ 0.8729
1380 0. 020 0. 0425 4.982x10 . | 0.8685
1480 0.018 0. 0384 4.967x10 | 0.8640
1590 0.016 0. 0342 4.953x10 | 0.8594
17190 0.014 0. 0300 4.938x10_, | 0.8549
1850 0.012 0. 0257 4.922x10_, [ 0.8501
2010 0,010 0.0215 4.905x10 , | 0.8453
2210 0, 008 0.0172 4.887x10 , | 0.8401
2470 0. 006 0.0130 4.866 x 10 0.8346
2820 0,004 0.0087 4.841x10°, | 0.8284
3430 0. 002 0. 0043 4.805 x 10 0.8204
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Thus, it takes 312 seconds for 5.37 X 10-2Kg (1 mole) of an 8% Al in Ni tc
change to 6% in Al concentration (A = 10-3 mz), with a4 decrease of 1. 26 x 10—3Kg
(2.33%) in the weight of the evaporating alloy. The same evaporating Ni-Al alloy takes
an additional 411 seconds to change its aluminum concentration to 4% with an additional
loss of 4. 71% in alloy weight. An additional time of 657 seconds is required for the same
alloy to change in aluminum conce. tration by another 2% (to 2%) with an additional loss
of 13.15% in the alloy weight. If the evaporating alloy is spread out as a thin layer with
an evaporating area A = 10"2 m2 instead of 10-3 m2, all the evaporating times given in

Table 1-2 must be reduced by a “actor of 10, in accordance with Eq 11 or 1la.

The alloy evaporating rate is directly proportional to the evaporating area A
and gene . ally must, therefore, continuously decrease with shrinkidg alloy volume, mass,
or surface. If the geometric shape of the evaporating alloy . .mple is fixed and known,
the time to reach a certain sample .'ize or deposit composition can ve computed by
numerical techniques based on Eq 6-9. Mb»lten materials in zero-gravity environmnnts
readily assume spherical shapes due to surface tension. An example of such sphericai
evaporation at the melting point of pure nickel, i.e., 1726K, for a 6.35 x 10_3 m
(} 1n.) sphere with a composition containing 8 weight percent of aluminum in nickel is
depicted in Figure 1-1. In this figure, curve 1 represents the weight fraction of the
remaining evaporating sphere (WFR); curve 2 the diameter of the remaining sphere (DM);
curve 3 the weight fraction of aluminum in the remaining sphere (WFA); and curve 4 the
weight fraction of aluminum in the vapor (WFV). All four parameters are plotied against

the evaporation time in seconds.

Figures 1-2 and 1-3 show the normal evaporation behavior at 1726K of several nickel
alloys centaining 109 by weight of such highly evaporative solutes as Cd, K, Na, and Rb,
these elements being much more volatile than Al. Figure 2 gives the ‘veight fraction
remaining in grams upon reaching specified solute concentrations in weight fractions, or
weight percentages from the original 10 weight percent and decreasing successively by
0.5%. Figure 3 gives the evaporating times (ti in Eq 11) to reach the same successive
solute concentrations. Again, the evaporating area A is assumed constant at 10"3 m2.
It can be seen that all these fast-evaporating elements reach the different final solute

concentrations five orders of magnitude faster than Al. Specifically, they take only about

1-13
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Fig. 1-1 Normal Evaporation at 1726K of a 6x1 O-3 m Sphere Containing
8 Weight Percent of Al in Ni
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Fig. 1-3 Evaporation Time During Normal Evaporation of 10 Weight Percent
Nickel Alloys
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500 microseconds, vs 58.3 seconds for Al, for the solute concentration to change from
the initial 10 weight percent to 9.5 weight percent. Very smali droplets or thin film:
having large evaporating ar~as relative to their masses would, therefore, change cim-
pocitions significantly, so rapidly that the change can never be prevented. The behavio
of any subsequent solidification may thus bc completely unexpected, and accurate
solidification analysis may thus be rendered impossicle or meaningless unless the exact
thermal history of the alloy is first very accurately measured and an evaporation study

then undertaken to determine the magnitude of the surface composition changes in thesu
alloys.

Comprehensive computations have been made for nickel alloys containing initial
solute concentrations of from 2 to 10 weight percent (at 2% intervals) of 50 different
solute elements evaporated at 1726K, the melting point of nickel. For each solute
element, the evaporating times were computed for 0.1% decrements in the solute con-
centrations until the final concentration of 14 was reached. The final molar and weight
fractions of the alloy remaining at the end of each evaporation period were also computed.
These computations, designed to furnish a handy reference for future experiment planning,
are available on request. In our original proposal, we recommended for study nickel

alloys containing 2 or 8 weight percent of tin or aluminum as the specimen materials for

our proposed experiment.

2.3.2 Iron Alloys

The evaporation behavior of binary iron alloys con:iaining 20 different solute
elements has also been studied. Table 1-3, listing the equi-evaporative temperatures for
these 20 different alloy systems, gives the ratios of the solute evaporating rate, U, at
1873K, to that of the solvent iron, V. At 1873K, 10 of these solute elements evaporate
faster than the solvent (the three left columns) and 10 slower (the three right columns).
Morenver, these ratios vary widely over 18 decades, {rom 4.41 x 10_12 for the slowest
evaporating, W, to 3.76 x 106 for the fastest evaporating, Cd. Because of this wide
variation, and due to the extreme sensitivities of the evaporating surface to unsuspected

contaminants, predicted or experimental evaporating results cannot generally be very

accurate.
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TABLE 1-3

EQUI-EVAPORATIVE TEMPERATURES
FOR TWENTY BINARY IRON ALLOYS

Solute U/V at T ,K Solute U/Vv at T, K
1873K s 1873K S
cd 3.765 x 10° 13,813 w 4.412 x 10722 -69, 317
Zn 2. 065 x 10° 15,883 C 8.210x 107 5,500
Mg 9.074 x 10° 19,382 Mo 1.879x 107 -11,857
Ca 5.503 x 10° 9,608 Zr 1.950 x 1078 ~417,517
Pb 3.333 x 10° 5,249 B 6.83. x 107 9,783
Mn 1.070 x 10° 21,013 \4 3.804 x 10 8,847
Al 45.65 8,291 Ti 2,254 x 102 34,923
Cu 12.25 5,886 Co 4.362x 107} 4,591
Sn 9.978 2,959 Si 5.238 x 10 3,098
Cr 3.158 58.1 Ni 5.897 x 10 3,309

The equi-evaporative temperatures in iron alloys also vary widely. Binary iron
alloys containing Cr, Zr. Mo, and W have no practical equi- 2vaporative temperatures.
One can, therefore, always expect these alloys to change compositions continuously with

the evaporating time.

Table 1-4 shows the effect of evaporating temperature on the U/V ratios for four
different solute elements Mg, Ca, Mn, and Al. In the range of 1773K to 2173K and
beyond, increasing the evaporating temperatures always decreases the U/V ratios.

This can also be seen from Table 1-3, as the equi-evaporative temperatures shown for
these four binary iron alloys are higher than 1873K, at which temperature the four solute
elements evaporate much faster than the solvent iron. Table 1-4 also shows that, for
the same temperature variation, the more evaporative the solute element the greater the
percentage variation in the U/V ratio. In the case of Mg the U/V ratio decreases by
about 20 times from 1773k > 2173K, whereas for Al the same ratio decreases only by

less than three times over the same temperature interval,
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TABLE 1-4 EFFECT OF SOLUTE ELEMENTS AND EVAPORATING TEMPERATURES
ON THE VALUES OF U/V (x 1000) IN IRON ALLOYS

Temp (K) Solutes
Mg Ca Mn Al
1773 2132.0 118.2 1.649 0.06037
1873 907.4 55.03 1. 070 0. 04565
1973 421.2 27.68 0. 7261 0.03552
2073 210.5 14.88 0.5110 0.02831
2173 112.1 8.466 0.3719 0.02304

Figure 1-4 shows the effect of solute elements and evaporating temperature, T,
on the evaporating time t, for a given set of initial and final solute concentrations (i.e.,
mo =0.01 and m =1 ppm). For given m and m, the log t versus 1/T curves for these
highly evaporative solute elements are approximately linear and have positive slopes.
This can be predicted from Eq (11) since, for given m_ and m, log t is linearly related
to B/T - 0.5 log T, and 0.5 log T is small relative to B/T within the evaporating tem-
perature range studied. Thus, one can use Fig. 1-4 to determine the value of the ele-
mental evaporating constant B, or heat of evaporation AH = 4.574 B (Dushman, 1962),
for the solute elements by plotting log t versus 1/T and measuring the slope of the

resultant, nearly straight lines.

In Fig. 1-5, the log t versus 1/T relationships also appear nearly linear for all
11072, 1073, and 107%) of A1 in

Fe. This can also be seen from Eq (11) and (12). All these nearly straight lines have

the four different initial concentrations (i.e., m = 10

identical slopes, from which the heat of evaporation of pure Al can be evaluated.

Figures 1-6 and 1-7 display the effect on the evaporating time, t, of final solute
concentration, m, and either initial concentration mo (in Fig. 1-6) or solute elements

(in Fig. 1-7).

Figure 1-8 indicates that Mg, Ca, and Mn in Fe alloys are so evaporative at
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1873K that practically all of these elements are removed by evaporation, without much

evaporative loss of the solvent Fe atoms. On the other hand, Al is comparatively less

evaporative, and much of the solvent Fe atoms are evaporated off together with Al. To
achieve a purification factor of 107 (i.e., tom = 10-9) from mo = 0.01, for example,

the initial evaporating alloy must lose over 30% of its material.
2.4 ACCURACY OF PREDICTED RESULTS

To check the validity of our derived equations for normal evaporation of binary
alloys, we searched the current literature. Several sets of alloy evaporation data have

been found that are amenable to normal evaporation analysis.

2.4.1 The Fe-Ni and Ni-Cr Systems

An analysis has been made of the data by Obradovic et al. (1969) for Fe-Ni and
Ni-Cr alloys evaporated at 1873K for different times under various ambient pressures.
In the 80% Ni-20% Cr case, evaporation started with No = 0. 7582 moles of the alloy having
an evaporating area A = 10"3 m2. The solute and solvent evaporating rates are, respec-
tively, UCr =3.479 x 10-1 and VNi = 6,386 X 10‘2 mol/mz/sec. In this case the solute,
Cr, is comparatively highly evaporative relative to the solvent, Ni. Hence, the evapor-

ating time t_ given in Eq (11) applies, i.e.,

1
(1-m )m m-m
t. =G. l4n o . 0
1 1 m (1-m) (1-m ) (1-m)
o o
where G1 = —No (1-mo)/AU, and m and m are the initial and final molar solute con-

centrations in the alloy.

Least-square fits of the Obradovic data give nearly constant values of observed
Glz :; 785, -5.064, and -5. 064 (x 104 sec) for ambient pressures of 1, 100, and 500
(x 10 ~ torr), respectively. The calculated values of Gl, though also nearly constant,
are, however, one order of magnitude smaller, indicating surface solute depletion.
Similar analysis for the 60% Fe-40% Ni alloy evaporated with No = 0. 7478 moles and
A=10"m? gives Uy, = 6.386 x 1072 and Ve =1-081 x 107 mol/m%/sec. Here, the

solvent Fe is much more evaporative than the solute Ni, and Eq (14) applies. The
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values of observed evaporating coefficients G_ = moNo/AV are 2.469, 1.369, and

2
8.386 (x 104 sec) for ambient pressures of 0,133, 13.3, and 66.7 Newtons/mz.

respectively. The calculated G2's are again nearly constant but alsu an order of

magnitude smaller than the observed G_'s, again indicating solvent depletion (or

2
solute enrichment) at the surface. Details of these analyses are given in Appendix A.

2.4.2 Beryllium Purification

The kinetics of normal evaporation for beryllium have been quantitatively
checked with actual results of beryllium purification during vacuum induction melting.
Details are given in Appendix B. In these tests by Bunshah and Juntz (1966), beryllium
was crucible-free, induction-melted under an ambient pressure of 1.33 x 10_4
Newton/mz. The actual temperature of the melt was not known, and the exact evaporating
rates for the beryllium solvent and various solute elements cannot he computed. How-
ever, because all solute elements (i.e., Fe, Cr, Mn, Ni, Si, Al, Mg, Cu, Zn, and Na)
and the solvent, Be, were evaporating from the same or common liquid-gas interface
of a fixed area for the same length of time, we can compute the values of P, defined as
the product of the evaporating time, t, and solvent evaporating rate, V (for V » U), or
solute evaporating rate, U (for U >> V); thus, P =tV or tU. Table 1-5 gives the initial
concentrations and final concentrations (in ppm) of the various solutes, together with the
value of P, actual surface concentrations, ratio of actual surface to bulk concentrations,

and effective times to reach the final concentrations under the assumption that the eva-

porating temperature was 1523K. The following conclusions can be drawn from Table 5-1:

e The solute elements can be divided into three groups: Fe, Cr, Ni, Si,
and Cu evaporate much more slowly than Be; Mg, Zn, and Na evaporate
much more rapidly than Be; and Al evaporates at about the same rate as

Be

e The computed times to reach the final concentrations under normal evapor-
ation conditions (complete liquid mixing) are fairly constant for the solute
elements that evaporate much slower than Be (i.e., Fe, Cr, Ni, Si, and

Cu), being about 4 x 104
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e The computed times to reach tihe nnal concentrations for the highly
evaporative Mg, Zn, and Na are also fairly constant, but about four

orders of magnitude smaller

o After correction for limited liquid mixing (Arnendix B), the cffective
times to reach the final concentrations are much more constant, even
betwee: the groups of solute elements. In pe:ticular, the highly
evaporative elements Mg, Zn, and Na have their results improved by

several orders of magnitude

¢ Limited liquid diffusion must, therefore, be considered, particularly for

the highly evaporative elements

e The surface solute concentrations can be changed by up to six orders of
magnitude so that the effective evaporating raies can be similarly

changed.
2,5 NORMAL EVAPORATION VS NORMAL FREEZING

Normal evaporation and normal freezing (Pfann 1966) are strikingly sim_lar in
many respects. Both deal with idealized transition phenomena between two phases. In
rormal evaporation, the two phases are either vapor and liquid or vapor and solid. In
normal freezing, the two phases are always solid and liquid. In either case, the interface
between these two phases moves in accordance with the constraints of mass transfer,
heat transfer, and liberation or absorption of the heat of evaporation or fusion. Either

phenomenon is idealized under the three assumptions tabulated below.

TABLE 1-6 COMPARISON BETWEEN ASSUMPTIONS IN NORMAL
EVAPORATIONS AND NORMAL FREEZING

Normal Evaporation Normal Freezing

Vapor or solid: complete vapor removal, i.e., Dv =e | Zero solid diffusion, Ds =0

Liquid: complete liquid mixing, D1 = Complete liquid mixing, D1 =

Phase Equilibrium: Raoult's Law Phase diagram
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In practice, complete vapor removal in normal evaporation has the same effect
as no solid diffusion in normal freezing. Both assume that the material changed into the
vapor phase (in normal evaporation) or solid phase (in normal freezing) is permanently
and completely lost, and no longer has anything to do with the remaining mateiial, as
far as mass transfer is concerned. Complete liquid mixing is assumed in both cases.
From the phase diagram, the freezing segregation coefficient k can be determined; based
on Raoult's Law, the evaporative segregation coefficient kv can be obtained. Both segre-
gation coefficients are generally functions of the solute concentration and phase transition
temperature, but can be considered constant under certain special conditions. Specifi-
cally, in extremely dilute solutions with limited solidifcation range, k is nearly constant;
while if U« Vand m << 1, kv is constant ai a given evaporation temberature. as in-

dicated above.

The value of k in normal freezing generally is within the relatively narrow range
of 10-3 to 10. On the other hand, kv in normal evaporation of nickel alloys at 1726K

12 for W to over 109 fre such highly evaporative solute elements

varies from 1.38 x 10~
as K, Rb, and Cd as shown above. The values of kV are thus many orders of magnitude

wider in range than those of k.

The velocity v of interfacial movement has a much broader range in normal
evaporation than in normal freezing. Normally, v varies from 10“6 to 10—3 m/sec, only
three orders . magnitude from maximum to minimum. In normal evaporation of nickel
alloys at 1726K, on the other hand, v varies from 6.74 x 10-20 m/sec for W to about

5.0 m/sec for K and Rb. The spread is almost 20 orders of magnitude.

Among the three assumptions (Table 1-6) in normal evaporation or freezing, the
one on complete liquid diffusion is most subject to error. Much work Las been done
to include the effect of limited liquid diffusion in normal freezing. The equations of
Tiller et al (1953) consider the initial transient state, the subsequent steady state, and
the final stage of solidification, because of solute pile-up in front of the solid-liquid inter-
face due to limited liquid diffusion. These equations are not very accurate for the general
case (Pohl, 1954), except when k is nearly zero. Fortunately, for the important case of

surface enrichment of trace impurities of a highly non-volatile impurity in solution, the
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evaporative segregation coefficient at a given evaporation temperzture is kv =U/Vv,
which i8 indeed close (o zero. Hence, Tiller's equation for limited liquid diffusion can

be bodily transferred to the normal evaporation studv with limited liquid diffusion.

We thus see that with limited liquid diffusion before the steady state is reached,
there exists a transient state during which the solute concentration an. thermophysical
properties of the surface-enriched layer change constantly in a manner that can be, but

apparently never has been predicted.

For the special case of U <<V and m << 1 involved in space experimentation, it is
necessary to know the "characteristic distance" and "decay constant" (across and over
which the relative solute concentration changes by a factor of e, as defined by Tiller
et al (1953)). Such determinations allow us to see how much unavoidable evaporation affects
solidification during a given test period, or indeed to determine if the solidification experi-

ment is meaningful or definitive and not unduly distorted by surface evaporation.

The characteristic distance is, as defined by Tiller et al (1953), D1 /kv, where
D1 is the liquid diffusion coefficient (generally about 10-8 mz/ sec). Thi: distance for
normal freezing thus covers about seven orders of magnitude, from 10 ~ to 10.0 m.
The characteristic distance for normal evaporation has a much broader range, covering

over 41 orders of magnitude and varying from 10—18 to 1023 m.

2
The decay constant is, as defined by Tiller et al (1953), Dl/kv and for normal
-3 7
freezing thus covers about 10 orders of magnitude, from 10 to 10 sec. The decay
constant for normal evaporation also has a much broader range, covering over 71 orders

of magnitude, from 10728 16 10%3 sec.

These much greater evaporative segregation effects would almost certainly conceal
any minor or subtle zero-gravity effects, especially in the presence of other unknown or un-
controlled effects. Definitive space solidification work should, therefore, be preceded by
an evaporative compatibility study of the sample materials and associated impurities. In
fact, evaporation is almost certain to be very important or so overwhelming that the effect
of zero-gravity or freezing segregation may be masked or even reversed. A freely sus-

pended molten drop in space may, for example, have its surface solute concentration

1-28

e



o

o

~

N BAr VR R, F T

B O PSP T o W3~ g

o

PN

X |

MPEINCARANTOR, || - SHOED DRTEATL 50 RIS e S NS Ry e 2t by

[

-

ottt

R e T

4

fruens 4

..

ke, §
R }

[
N (%3

LS

Moar b
.

. e,

P

»romycend, paremy T
'

 ere g

LA o

Priaienn
[ S

ey

vl LT ]
b -9

t

LTS
by

gy
s

greatly enriched, even as much as a millionfold by neglected and undetectable trace
impurities within a fraction of a second of its deployment. We are then dealing at the
critical surface layer with a completely new and unanticipated alloy, e.g., trace impurity
indium instead of the original zinc, having entirely different composition, melting point,
surface tension, thermophysical properties, latent heat of fusion, undercooling and

nucleation characteristics, growth morphology, and the like.

These and similar analyses suggest that the normal evaporation equations pre-
sented ahove work surprisingly well for the several alloy systems studied so far. The
equations generally give results accurate to within an nrder of magnitude of the correct
values, perhaps even for highly concentrated solutions (e.g., 20% Cr in Ni or 40% Ni in

Fe). Such accuracies are sufficient for many evaporation studies.

In more critical studies, however, refined evaporation analyses may be needed.
In particular, the effect of limited diffusion and, hence, surface depletion or enrichment
of the solute must often be accounted for. This is true especially for the highly evaporative
solutes such as Mg, Zn, and Na in the solvent Be. We already have results that confirm

this conclusion. Details of these results will be published in Ref. 8 and elsewhere.
Section 3. ACCELERATIONS DUE TO DIFFERENTIAL EVAPORATION

In any zero-gravity experiment, it is important not to subject the test samples to
accelerations due to gravity or other forces. Further, the molten samples should not
touch the wall of the test chamber before solidification. Different rates of evaporation
at various surface regions of a freely suspended sample do, however, give rise to un-
balanced forces and momenta that may produce erratic or unwanted accelerations and
undesirable sample impingement onto the test chamber wall. Such differential evaporation
may result from solute segregation, nozzle dei~.climent, or temperature gradi-ii. For
example, one-sided heating by an electron beam, introduces severe e .porative segre-
gation and very steep temperature gradients. Previous work "y Dr. T. Kassal at
Grumman Research on water jetting into vacuum ir:f);zgé’giilat differential evaporation

introduces unpredictable movements that are eo"ﬁy observed in motion pictures.

When planning space experirzats on material solidification it is, therefore,

'

~

-
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desirable to have quantitative answers to .c following specific questions:

® What are the jetting forces on samples of differcnt elemental materials
under given temperature nonuniformity conditions > What elements are
stable (i.e., subjected to small jetting forces) at their melting points,

and what elements are unstable ?
® What is the effect of sample size and density on jetting forces ?

e For a given sample material, what are the critical or undesirable im-

purities, and what are the desirable or stabilizing impurities

e What are the equivalent accelerations or gravities on the samples under

specified test conditions ?

e Starting from rest, how long does it take for a differentially evaporating

sample to reach the wall of test chamber of a given size ?

e What is the minimum test chamber size or maximum degree of super-

he ating for a given sample material and size ?
® How should the sample be heated and released, and with what equipment ?
3.1 ANALYSIS OF THE JETTING ACTION

The above questions can be answered by a simple analysis of the jetting action on
a differentially heated sphere, such as is shown in Fig.1-9. The right half of the sphere

is assumed to have a surface temperature Tl' which is lower than T_, the surface

2’
temperature of the left half of the sphere. As a result, the vapor pressure p, on the
left half is greater than that (pl) on the right half. There is then a net force f which
produces an acceleration a. This acceleration causes the sphere (diameter d, density p)

to travel a distance s to impact the wall of the test chamher or other nearby objects.

The jeirting force due to differential evaporation is (see Appendix C)

2 3
£= %({_ d )(pz'pl) B (‘2’ d °) 2
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Hence, the acceleration due to the jetting action is:
=(p.~ 4d
a = (p,~P, )/4dp
The equivalent gravity is then a divided by the gravitational constant g = 9. 81
2
m/sec
g, = a/g =a/9.81

And the time t for the jetting sample to travel the distance s before impacting

the nearhy wall or object is

t =VZs/a =J§dso /3 (P,P,)

In the abure analysis, we assumed zero initial velocity and acceleration; the
equations are easily corrected for nonzero initial velocity and acceleration. The times
computed are, therefore, the maximum allowables for performing the experiment or pro-
cessing. Note that these times are proportional to pds raised to the one-half power. In

addition, they depend even more critically on AT = T2-T and on the evaporation behavior

1
of the sample material, i.e., on PyP,- This is because the elemental vapor pressures
vary by over 38 orders of magnitude at the melting point of nickel (1726K), and because

these vapor pressures are highly temperature sensitive, as previously shown.
3.2 COMPUTED JETTING ACTION ON SINGLE ELEMENTS

The 51 metallic elements listed in Table 1-1 have been screened for potential,
space-processing sample materials. Here, the sample diameter is fixed at 6 x 10-3 m,
while the allowable distance of travel is constant at 0.3 m. Further, half of the spherical
surface is assumed to be at Tl’ the melting point of the sample material, while the other
half is at T2, being superheated by 5 to 100% of the absolute melting temperature. Com-
putations show that the allowable times at 57 superheating vary widely from tens of milli-
seconds to over 109 years for gallium. Table 1-7 summarizes the data on these highly
stable sample materials, as compared to nickel. These results further stress the

critical importance of evaporative segregation.

Figures 1-10 through 1-12 show the jetting characteristics of the top four, or most
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stable elements, i.e., Ga, Sn, In, and La. These figures illustrate the superheated
vapor pressure, equivalent gravity, and time to travel 0.30 m, for a 6.0 x 10"3 m molten
metal sphere, heated to its melting point on one side b1t superheated on the other. The
amount of superheating varies from 5 to 100% at 5% intervals. Figures 1-13 and 1-14

give similar jetting data, but for nickel and iron samples respectively.

Thus, the unwanted accelerations due to differential evaporation, while completely
negligible in many materials, are serious factors to be considered in others, including
the specified nickel samples in M512 Skylab experiments. Specifically, it takes only
10 or 20% superheating on one side of a 6 x 10-3 m molten nickel sphere to impact the
experimental chamber wall 0.3 m away within three or one seconds, respectively, of its
release. Complete solidification in free suspension may, therefore, be very difficult

under these conditions.

In other words, nonuniformly heated, 6 x 10-3 m spheres are subjected to equi-
valent gravities of from 2.26 x 10_39 Kg for gallium to 3.25 x 10-3 Kg for magnesjum, if
the spheres are superheated by only 5% on one side relative to the other side at its
absolute melting point. From this, we anticipate new types of powerful evaporative con-

vection currents to be described later.

Notice that, in both nickel and iron spheres of the specified size, the computed
equivalent gravity exceeds the one-g level if one side is superheated by 35 and 26%,
respectively, relative to the other side at its absolute melting point. Such evaporation
and jetting action is, of course, merely the familiar rocket action. In the performance of
some Skylab experiments, however, such differential jetting can have important and
serious implications. The 6 x 10"3 m spheres in the M512 sphere-forming experiment,
for example, are known to be very unevenly heated by the electron beam from one side,
to the point of occasional spitting or explosion, but remain solid on the other side. Such
samples may be subjected to very large, unwanted accelerations (and hence equivalent
gravities) of unpredictable magnitude, direction, and duraticn. Unless corrective action
is taken, such as changing the sample material, in.proving the hardware design (now
considered too late), or optimized heating procedures, any solidification results may be

difficult to interpret in terms of zero-gravity effects.
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Figures 1-15 and 1-16 display the jetting characteristics on partially superheated,
6 x 10_3 m spheres of highly volatile materials due to differential evaporation. These
figures are, respectively, for equivalent gravity and time to travel 0.3 m, for seven

different volatile elements at eight different degrees of superheating from 5 to 100%.
3.3 COMPUTED JETTING ACTION OF IMPURITIES IN NICKEL

The undesirable jetting action due to certain evaporating impurities can also be
replaced by the desirable stabilizing action of other impurities. Specifically, a
6.0 x 16-3-m nickel sphere, at its melting point of 1726K, may have its normal jetting
action at 5% superheating on one side reduced from 2.15 x 10-3 gto 7.34 x 10-15 g by
an enriched surface layer of tungsten, or to 6. 75 x 10"14 g by tantalum. These data on

the stabilizing impurities on nickel are illustrated in Fig. 1-17.

Figures 1-18 to 1-23 show the stabilizing actions of surface layers of the six most
powerful stabilizers in nickel. These stabilizers, as shown in Fig. 1-17, are W, Ta,
Cb, Os, C, and Mo. These figures show, as ordinates, the superheated vapor pressure,
equivalent gravity, and time to travel 0.3 m, for a 6 x 10-3 m molten nickel sphere.
This sphere has a surface layer of the specified stabilizing element and is heated to the
melting point of nickel (1726K) on one side but superheated on the other. The amount of

superheating in percentage points is plotted as the abscissa.

Figures 1-24 and 1-25 give the jetting characteristics on partially superheated,
6 x 10-3 m nickel spheres, surface-contaminated with powerful agitators or highly
volatile elements. These figures are, respectively, for equivalent gravity and time to

travel 0.3 m for several volatile elements at different degrees of superheating up to 100%.

If we compare Fig. 1-18 with Fig. 1-24 or 1-25 we see that, ona 6 x 10_3 m
nickel sphere superheated above its absolute melting point by 5% on one side, the equi-
valent gravity varies by 19 orders of magnitude from 4.87 x 107 for Kto 7.34 x 10-15
for W. For the samne partially superheated nickel sphere, the time to travel 0.3 m varies
by 10 orders of magnitude froml. 84 x 10-4 sec (i.e., 184 usec) for K to 2.89 x 106 sec

(i.e., 0.92 years) for W surface layer.

1-40




NPT TETINE T3 SV V S

gt

P VRSRT 2T T 2

T Skt S AP

FY O

TR P N N SN AW A PRy s en. @

1 gy A e ey

Py
'

1

e o

1 iy

¥

ey

t

b i o

i

et 4t

EQUIVALENT GRAVITY, g

-
o&
v

'oo e Y § 4 A P 1 I S | - nd - 't A S Y

DEGREE OF SUPERHEATING, %

Fig. 1-15 Equivalent Gravity on Partially Superheated, 6x10'3m Sphere of
Hi-hly Volatile Material Due to Differential Evaporation and Jetting

4



NP R CRNNEE Y AR R P L

“r

iy W

oy

t

100 ¢

R E PO T A T R

102}

10'3 o

TRAVELING TIME, SEC

-

105}

- . .

DEGREE OF SUPERHEATING, %

Fig. 1-16 Time for a Partially Superheated, 6x10-3m Sphere of Highly Volatile
Material to Travel 0.3m Due to Differential Evaporation and Jetting

142
&—~



[PER et

vy

T RRUIY Toy g 41

C PR e W AR, N T

A

4

ey

. ——y

“F

S s A

[ )

bs A
&

10’2 b

|3
¥

ho dllanc)
v

1=
¥

B Wyt
s 4
v

10‘6 o

oebra § & e ridy

Jor
v

EQUIVALENT GRAVITY, g

s

1010

'ﬂw,wl
-
L2

b ey
L 2

-

1012

:.-wq s
-0,y

Ty

DEGREE OF SUPERHEATING, %

at Specified Degrees of Superheating

l Fig. 1-17 Equivalent Gravity Due to Stabilizing Impurities for Nickel at 1726K,
143



P o S

BT R TR B TR SRS E

.

L A

106}

10}

100 -
102}

104}

1010}

w014}

10.16 e A i i 4 A 3 A L A A - i A s 4 i A

DEGREE OF SUPERHEATING

Fig. 1-18 Jetting Action on 6x10">m Nickel Sphere Containing Surface
Layer of W

1-44




“t

e 0 VRS IR RSN SRR T

-

N 4

e ow

TR RSN S RS P & VT R R G TN . B e IO T T Y LR

e
=

£maeod 5wt

e L)

[ LR Y

P .y | alidemel
¢ <

’ﬁle‘; o

[t ]
F

-~
Anwn ¥

g
awe b &

fo

painned
L ]

e

‘ R ]

e

102

108

108

10-10

10‘12

10'14

v

-

. r' Y y A A y - - e y A e -y y' - A e

0 50
DEGREE OF SUPERHEAT!NG, %

Fig. 1-19 Jetting Action on 6x 10"3m Nickel Sphere Containing Surface
Layer of Ta

1-45



B i B

Raie o A N B A

Ry

e,

IR TS T, YT

P T

o

e

[PPSR ¥ PR

e RTINS DO SN TR ¢ % i 5

108

102

102

104

108

1010

10'12

v

v

A L - 1 s - 4 ' e ', vy el 4 'y e 'S iy b - .

50
DEGREE OF SUPERHEATING, %

Fig. 1-20 Jetting Action on 6x10"3m Nickel Sphere Containing Surface
Layer of Cb

1-46

100



] g
1 E
w2

i 2
Jwo M
=]

“1 [=]
(&)

- (L) m
: i

1 <« &a
w —

. o m
P2
13 2 o~

w 3m ¥
1 2 ' —
&
1 o
wi
o

25
Fig. 1-21 Jetting Action on 6x10
Layer of Os

) —

J
L _— 2 I (] Y ke e (] Lo A Y - Y A 4 - - s o
~ © [T L o - =] - o~ ™ < 0 © ~ [} -] o - o~
o [=] o o . p p - - -
e 2 % 2t % 2 % e e 2 2 e e 2 oe° T T %oe
-

(ORI CUS T T D S8 N N S T R o e S S s e S e S oo S e B =S B OO L

et ey b o A R

e e gt B m BT o A Rl e 2 e CRTMEL R ARSS S e or e g e s o A OGRS Vias., ook oo Dl e o AR

L4
B LY TS g R T - s S e R e L R R N



A AL N IR TR R T LNt -

'

ot

"

108 ¢
w0t ©
XA
b
Sequ
(/4,
8 G
2 Ty
102} S - S&o
L * ‘
100L q’ ;, = Y - (o -
N " ~oal_
S \)Q‘Q" 9 . B
é 4
& -
UV 4
oS A
21 0 ¢
10 <
\\v. 0
&
. ¥ 4
Q;Z‘
Q, %,
. S 4
4 >/ 12
10 ;&s
) e
: [ D
H & 2
H &
» 2
' 106 o
i s '
H
108
|
L9
10‘10 4
0 50

DEGREE OF SUPERHEATING, %

-3
Fig. 1-22 Jetting Action on 6x10 m Nickel Sphere Containing Surface
Layer of C

1-48

L s IS0 001 s g - ¢ i ot WP MDA PBINE [ g 0 o

P
14
|
|
{
|

100



¥ e

R TR

‘-

P

R L L1 2 4 o P P AR
. o T

R
L TP AT AT 4§ S

D T i

pered

Pee

Lt Lt ]
’ ]

P

[P,
» »

Poctuseto [P
ok Cemnrn

[

e 52 ]

102 e

102}

10‘6 b

o

10‘8 L

p

w010t
0 50 100

DEGREE OF SUPERHEATING, %

Fig. 1-23 Jetting Action on 6x10_3m Nickel Sphere Containing Surface
Layer of Mo

1-49



AR i i I

-

P

IR M v

e EIRT

R

- .

(ARSI T PR W21 3

P MG RGO PR RPN L b AR e

.

e TR T L s !

IETEOT I

P,

EQUIVALENT GRAVITY, g

107 ¢
Mg
Na
K
Ccd
108 ¢ Rb
109 }
K
Na
Rb
cd
10% b Mg
10°
2 A = 2 A A _A "y - 4 A 2 A 4 A & i . e B 4 N}
10?0 50 100

DEGREE OF SUPERHEATING, %

-3
Fig. 1-24 Equivalent Gravity on 6x10 m Partially Superheated Nickel Sphere
with Surface Layer of Highly Volatile Element Due to Differential
Evaporation and Jetting (Sheet 1 of 2)
1-50

T




R T TR R O S - - Ly S B AR oF . S

e

T E”

X .

rmourn
»

EQUIEVALENT GRAVITY, g

108
2n
Li
105}
Ca
Sr
Sb
104}
103}
12 s
‘ e e e . e . 2 § - - a2 | . s e . 2 Iy ' | . ) — Fy
10
0 50 100

DEGREE OF SUPERHEATING, %

Fig. 1-24 Egivalent Gravity on 6x10-3m Par tially Superheated Nickel Sphere with
Surface Layer of Highly Volatile Element Due to Differential
Evaporation and Jetting (Sheet 2 of 2)

1-51



5 R, LT LT F e

WL IRBE

DG AR P 7oy N ¥ - 4

e M

. gmwan .

o

PRI Lo R o

Rl Y ¢ Rl SRS SR

TRAVELING TIME, SEC

~1 7
-2 P
Sb
Sr
Ca
-3}
Li
Zn
-4 b
-5 el A e A A i A Y R 1 i i A A A b P
0 50 100

DEGREE OF SUPERHEATING, %

Fig. 1-25 Time to Travel 0.3m for 6x10-3m Partially Superheated Nickel
Sphere with Surface Layer of Highly Volatile Element Due to
Differential Evaporation and Jetting (Sheet 1 of 2)

1-62

s,

4 er————




< -

TR T A

e

T

cs s L AR el

R -

TRAVELING TIME, SEC

w0l
102}
103}
w04t
1650 P S S S GRS S 4;6 S S G S G Y ;

DEGREE OF SUPERHEATING, %

Fig. 1-25 Time to Travel 0.3m for 6x10-3m Partially Superheated Nickel
Sphere with Surface Layer of Highly Volatile Element Due to
Differential Evaporation and Jetting (Sheet 2 of 2)

1-53



(R SFR A - St

B SO BUNE 7 ) BN

<

L

Aee

.ﬂm g:a'“,‘

3.4 FLUID DISTURBANCES DUE TO JETTING FROM DIFFERENTIAL EVAPORATION

Two of the great advantages of manufacturing in space #r. rero-gravity conditions
and the complete absence of convection currents due to the earth's gravity. With the
absence of all convection currents, localized fluid disturbances, temperature differences,
concentration variations, and complex heat and mass transfer conditions do not exist.
Solidification can, therefore, be more easily controlled, and defect-free crystals are

then readily obtained.

However, even in zero gravity, localized or interfacial fluid flow, moven.eit,
instability, or other disturbance can still occur due to surface tens'on gradients resulting
from temperature or concerntration gradients. This phenomenon, generally called the
Marangoni effect or instability (Bikerman 1958, Scriven & Sterling 1960, Sterling &
Scriven 1959) manifests itself in such forms as "interfacial engine", instability,

twitching, cellular motion, Benard's cells, and tear drop in a wine gless.

Another type of fluid disturbance not previously reported may result '+-.m jetting
or rocket action due to differential evaporation as described above. A nonuniformly
heated liquid drop in space will be non-spherical because both surface tension and jetting
action are strongly dependent on temperature. At equilibrium, the internal pressure nf
the drop is, of course, constant., The varying jetting pressure therefoire appears as a
variation in the curvature of the drop so that the algebraic sum of the jetting pressure and
the internal pressure due to surface tension is constant. Since the jetting pressure and
surface tension vary according to entirely different funciions of the drop temperature,
such constancy can be maintained for only a selected voint or ring on the drop surface.

The overall shape of the liquid drop must, therefore, be non-spherical.

Under gravity or the equivalent, jetting action may show up as local variations in
the fluid level. Figure 1-26(a) shows the heating characteristics of v liquid in a1 con-
tainer. The instantaneous profiles for the temperature, evapcration rate, je:iting
pressure, surface tension, and surface curvature are shown. For a liquid being heated
in a container, the sides are at higher temperatures and, hence, have higher evaporating

rates and jetting pressure, but generally lower surface tension than the center region.
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The liquid surface must therefore convex upward if the jetting pressure is large.

Large jetting pressures are often possible, as shown previously. Note that the effect

of lowering surface tension with temperature partly compensates for that of the jetting
action; the liquid surface is more planar than if surface tension were absent. Similarly,

Fig. 1-26(b) shows the cooling characteristics of the same liquid in the same container.

Jetting action may also introduce a new type of powerful convection current.
The surface of hquid drop is usually not clean. Certain spots or regions S on the surface
may be contaminated with slow-evaporating material (Fig. 1-27(a)). These spots or
regions may be oxidized into relatively non-evaporating oxides. Even under uniform
heating conditions, such a drop may be evaporating nonuniformly over its surface.
Localized, differential evaporation or jetting forces may then develop to supply the
necessary mechanical energy for initiating or maintaining convection currents, as

shown in the Figure.

Figure 1-27(b) shows a similar, uniformly heated liquid drop that is surface-
contaminated with highly-evaporative material 2t certain spots or regions S, resulting in
higher jetting pressures p_ 2t S compared to neighboring regions. Such differential
jetting forces m. v, again,-‘initiate powerful convection currents. It has been shown by
Prof. Reid of MIT (1971) that even a few atomic layers of selected materials can increase

the local evaporating rates by orders of magnitudes for sustained periods of time.

Note that these convection currents, resulting from differential evaporation, are
completely different in origin and characteristics from those induced by differential
surface tension (Marangoni effect). In fact, the two types of convection currents often
have counteracting effects, one tending to compensate for or cancel the other. Also, they
differ from gravitational convection currents. Gravitational convection currents are
generally very massive, extending deep into the body of the liquid. Convection currents
due to differential surface tension, on the other hand, are b nature surface limited.

The new convection currents induced ** jetting due to differential evaporation extend to a
degree intermediate between the oii.e: two types of convection currents. Solidification
behavior i)redictions of a specified system hased on results on one type of convection

current may, therefore, not be valid when applied to other types of corvection currents.
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Section 4. EQUI-EVAPORATIVE TEMPERATURES AND THEIR APPLICATIONS

The normal evaporation techniques presented above give results accurate within
an order of magnitude of the correct values, at least for the several systems studied.
More refined methods, including those accounting for the limited liquid diffusion in the
evaporating source, should be considered, as evidenced by the great improvement in the
predicted results in the purification of beryllium containing such highly evaporative
solutes as Mg, Zn, and Na. During evaporation, not only the solute concentration, but
also the shape, size, and evaporating area of the evaporating source may be constantly
changing. Figure 1-1 clearly shows the normal evaporation behavior of a 6 x 10“3 m

sphere containing 8 weight percent of aluminum in nickel.

In the most general case, we consider steady-state and transient-state evaporation
with constant changes in solute concentration, shape, and size of the evaporating source.
The liquid diffusion is usually far from complete, and Raoult's Law of ideal solution may
not be valid. Not only mass diffusion, but also heat transfer, fluid dynamics, and other

related phenomena must be dealt with.
4.1 EQUI-EVAPORATIVE TEMPERATURES IN ALLOY SYSTEMS

The evaporation of alloy samples likely to be met in space processing (zone
melting, crystal growth, thin film formation or, in general, controlled solidification and
heat treatment) is complicated. Fortunately, for a given solvent and solute there exists
a unique equi-evaporative temperature at which the solvent and solute are equally evapor-
ative, i.e., U =V. Hence, at this unique temperature the alloy remains constant in
composition, independent of the initial solute concentration and sample shape or size.
This temperature, which can be computed from Eq (21), may be non-existent because

it is negative or it may be too high or too low to be practical.

However, for many binary or even ternary alloy systems, the equi-evaporative
temperatures do exist and are practical. A computer search has been conducted among
the 2550 binary combinations (i.e., 51 solvents x 50 solutes) and of 62,475 (i.e.,

51 solvents x 50 x 49/2 first and second solutes) ternary combinations, of the 51 metallic

elements listed in Table 1-1. By '"practical" we mean that the equi-evaporative
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temperature is no higher than 200% of the absolute melting point of the solvent. At each
such equi-evaporative temperature, the relevant binary phase diagram in Hansen (1958)
was consulted to determine the range of solute concentrations for which the alloy is in

liquid form.

The results of these computer searches are summarized in Tables 1-8, 1-9, and
1-10. Table 1-8 gives the equi-evaporative temperatures for binary alloy systems con-
taining liquid phases. Table 1-9 lists the same temperatures, but for other binary alloy

systems which either contain no liquid phases at these unique temperatures or have ill-

defined phase diagrams according to Hansen (1958). Table 1-10 gives the equi-evaporative

temperatures for ternary alloy systems. With the exception of alloys of carbon, which
generally have ill-defined phase diagrams, all other alloys having practical equi-

evaporative temperatures are listed in these tables.

Consider, for example, Table 1-8. The Ag-Ga system has a equi-evaporative
temperature of 1245. 8K or 972. 7°C. This unique temperature is 101% of the absolute
melting point of Ag (1233.9 K) but over 411% of the absolute melting point of Ga (302.9 K
or 29.81°C. Hence, Ag alloys containing Ga having a ''practical' equi-evaporative
temperature of 1246K are listed in Table 1-8; but Ga alloys containing Ag have an

"impractically' high equi-evaporative temperature (also at 1246K) and are not listed.
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TABLE 1-9 EQUI-EVAPORATIVE TEMPERATURES FOR
OTHER TWO-COMPONENT SYSTEMS

Melting
Solvent Point, K Solute and TsK

Au 1336 Sc 2670

B 2573 La 4333; Rh 3069; Pt 2003; Th 970.7; V 2933

Ba 983.1 T1 704.8

Be 1557 Ga 2519; In 2994; Sn 946.8

Ca 1116 Sh_ 671.3; Sr 1633

Cb 2741 Mo 3489; Os 3634; Zr 49380

Cd 594.1 Cs 1139; Rb 1179

Ce 1077 Au1310; Cu 1940; Ge 1097; Sc 985. 0; Sn 1852

Co 1765 Au 3293; Ge 2975; Pd 1335; Si'1050; Sn 3164

Cr 2173 Al 4030; Au 1807; Cu 2951; Ga 3865; Ge 1513;
In 3996; Pb 4166; Sc 1477; Sn 2291

Fe 1809 Au 2902; Ge 2465; Ni 3309; Pd 324.8; Sc 3091;
Si 3099; Sn 2959

Ge 1210 Ce 1097; Cr 1513; Sc 1617

Ir 2716 Mo 297.1; Ru 4513; Th 4722; U 5188; Zr 1678

La 1193 Si 306.7; Ti 2104; Y 1208

Li 453.1 Sr 288.9

Mg 923.1 Cs 1834

Mn 1517 Pb 2430

Mo 2893 Cb 3489; IR 297.1; Os 3414; Ru 1596

Ni 1726 Au 3110; Fe 3309; Ge 2798; Pd 1137; Sc 3178;
Si 2614; Sn 3111

Os 3318 Cb 3634; Mo 3414; Zr 6125

Pd 1825 Co 1335; Fe 324.7; Ni 1137; Si 10470; Y 3277

Pt 2042 B 2003; Ru 801.5; U 4038

Rh 2233 B 3069; Pt 801.5; U 2878

Ru 2583 Ir 4513; Mo 1596; Th 4619; V 5005; Zr 3085

Sh 903.6 Ca671.3

Sc 1811 Au 2670; Ce 985.0; Cr 1477; Fe 3091; Ge 1617;
Ni 3178; Si 3095; Sn 2912

Si 1685 Au 2969; Co 1010; Fe 3099; Ge 2689; La 306.7;
Ni 2614; Pd 1293; Sc 2095; Sn 2987

Sn 505.0 Be 946.8

Sr 1043 Ca 1633; Li 288.9

Th 2027 B 970.7

Ti 1940 La 2104

Tl 576.1 Ba 704.8

U 1403 V 1328

\Y 2193 La 2885; Pd 4143; U 1328

Y 1793 La 1208; Pd 3277

Zr 2133 Ir 1678; Ru 3084
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TABLE 1-10 EQUI-EVAPORATIVE TEMPERATURES FOR
THREE-COMPONENT SYSTEMS

Liquid
Melting Concentration

Solvent Point, K Solute Ts, K Range

Cd 321.0 K 1180 0-1. 00
Rb 1179
Si 1412.0 Sc 3095
Fe 3099
Ni 1453.0 Au 3010
Sn 3011

4.2 SIGNIFICANCE OF THE EQUI-EVAPORATIVE TEMPERATURE

The binary or ternary alloy systems presented in Tables 1-8 through 1-10 are
ideal, at their respective unique temperatures, for the stud‘_\'f of heat transfer, sphere
detachment, deformation and oscillation, bubble formation and movement inside the
liquid, and the like, since their solute concentration is constant regardless of the initial
concentration and sample shape or size. In addition, by changing the initial solute con-
centration we can isolate and study the effect on these phenomena of such concentration-
related properties as surface tension. In all such experiments, the solute concentration
will remain constant throughout the entire sample during the experiment. There is no
concentration nonuniformity and no surface concentration gradient. The initial, boundary,
intermediate, and final conditions of the sample composition are completely defined,

known, and stable.

At these unique temperatures, we can accurately determine the equilibrium
liquid and solid solute concentrations for use, for example, as reference points on
conventional phase diagrams. These solute concentrations can be obtained with an
accuracy completely independent of the sample shape and size, and even independent of

the heating rate if the sample is equilibrated at the equi~evaporative temperature. The
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resultant sample will display a sharp solid-liquid interface. There will be a com-
pletely uniform liquid composition, and a completely uniform but different composition
in the solid. No concentration gradients exist in either the liquid or the solid. Any
portion, large or small, of the liquid or solid is perfectly representative of the same
phase and resolution of the analytic instrument or technique becomes immaterial.

We can, therefore, determine these concentrations by Auger, electron probing,
spectroanalysis, chemical analysis, etc., with almost the same precision. This is
true even if the alloy contains one or more highly volatile components. The segregation

coefficient k at this unique temperature can, therefore, also be accurately determined.

We can also propose the following unique, isothermal solidification experiment.
A liquid alloy sphere containing 0. 75 mole fraction of tin in aluminum is evaporated at
slightly below the equi-evaporative temperature, say at 863K. The solvent aluminum
now evaporates more slowly than solute tin. This condition results in a solute enrich-
ment in the remaining liquid. Upon reaching 0. 74 mole fraction of tin, the alloy
solidifies according to the phase diagram. The solidification proceeds from the sur-
face, but remains at the constant temperature of 863K. The evaporating time can be
calculated by means of our normal evaporation equations presented in a previous section
of this report, after the shape and size of the evaporating sphere are specified. By
controlling the evaporation temperature one can control the rate of solute enrichment
which, together with mass diffusion constraints, allows us to control the rate of solidi-
fication. When the evaporation or isothermal solidification temperature is very close
to the equi-evaporative temperature of 868. 7K, one gets a true picture of solute
segregation due to solidification rather than the combined effects of solidification and
unknown amount of evaporation, as is almost always the case in current studies.
Further, in space, where surface tension is important but gravitational convection is
negligible, one can start with a homogeneous sphere and freeze it isothermally from the
spherical surface at a rate so slow that unique cellular and granular structures can be
obtained. In addition, one can locally control the temperature of the molten sphere by
means of a heated or cooled sting, or by means of concentrated electron or optical

energy, so as to initiate single crystal growth in the manner of Walter and Snyder (1971).
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Section 5. TONSTITUTIONAL MELTING AND SOLIDIFICATION DUE TO EVAPORATION

Consider aluminum and tin. Al melts at 933.3K and Sn at 505. 0K (see Table 1-1).

This binary system has a equi-evaporative temperature of 868. 7K (Table 1-8), which lies
between the melting points of the two components. At this unique temperature Ts (line
AB in Fig. 1-28), both elements are evaporating at exactly the same rate and no com-
positional change takes place. At a temperature T > I‘S, Al evaporates faster than Sn,
and (surface) depletion of Al and enrichment of Sn occur. AtaT <Ts' the reverse is

true and Al enrichment and Sn depletion occur.

According to the A1-Sn phase diagram (Hansen 1958), the binary alloy is liquid
if it coutains more than 0. %6 mole fraction of Sn at 'I‘s (point D). Lét us select a liquid
composition below line AB and somewhat to the right of point D, e.g., 0.265 mole
fraction of Sn at 868.1K (point G). Since at 868.1K Al is evaporating slower than Sn, the
alloy composition will constantly increase in Al, and must move isothermally toward the
left or Al-rich side. Upon reaching the liquidus on the Al-rich side of the phase dia-
gram, i.e., point H, the alloy solidifies, first on the surface but progressively toward
the center of the sample because of mass diffusion. We thus achieve a new isothermal
solidification of non-eutectic, binary alloy, because of surface con:‘titutional or com-
positional changes through evaporation. Note that isothermal solidifiction of alloys
(not pure metals) can only occur at the eutectic temperaturz. Our constitutional solidi-

fication experiment, is, however, not limited to the eutectic composition.

1f point G is sufficiently below line AB, we can heat up the molten sample G below

the line AB to achieve Al enrichment and, hence, solidification on heating.

Similarly, the solid composition M can be constitutionally melted at a constant

temperature (along line MN) or at a decreasing temperature (along line MP).

All four constitutional phase change phenomena, i.e., isothermal melting
(path 1), melting on cooling (path 2), isothermal solidification (path 3), and solidification
on heating (path 4), of non-eutectic, binary (ternary, or other multi-component) alloy
systems appear to have never been reported. Yet these phenomena may well occur in

space experimertation. In fact, these "anomalies' may greatly confuse the experimenter
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Fig. 1-28 Constitutional Melting and Solidification of Al-Sn Alloys
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if an evaporation analysis is not first performed for the particular alloy system within

the temperature range of the experiment.

For Au-Ce alloys, Table 1-8 gives equi-evaporative temperature as TS =1310K
(line AB in Fig. 1-29), which 18 intermediate between the melting points of the two
components. At a temperature T < Ts Ce evaporates slower than Au, while at a

temperature T > Ts Ce evaporates faster than Au.

An interesting point about the Au-Ce system is that, at T = Ts' the alloy is
liquid within the following several ranges of Ce atomic concentration: 0.03-0.186,

0.30-0.32, 0.37-v.38, and 0.72 (Hansen 1958).

An alloy starting at point F and isothermally heated at 1323K will be initially
liquid. The alloy will, however, lose more Ce than Au at this temperature, and its
composition will therefore move along line EF toward the Au-rich side. Solid crystals
of CeAu will separate out on the surface when the composition reaches point G. Con-
tinued heating at the temperature of 1323K will cause more intensified surface depletion
of Ce, i.e., the alloy composition will further shift toward the left, on the surface,
through evaporative segregation, but inside the sample through solid and liquid diffusions.
Eventually, the alloy will have four solid phases representing, in order, the compositions

CeAu, CeAu_, CeAua, and nearly pure Au. The compositions of the phase boundaries can

be read off I'?ig. 1-29 at the intersection points of line EF with the several liquidus lines.
If the sample is in the form of a freely suspended drop or sphere in space, it will have
seven, alternately liquid and solid, concentric spherical shells. Such a structure is
novel and unique, but may be used to deiermine solid and liquid diffusivities and phase
boundaries. Since Au has a den.ity of 19.3, compared to 6. 75 of Ce, we may use this
composite structure to study convection currents or other fluid movements due to gravity

in spherical shell geometries.
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Section 6. APPLICATIONS OF EVAPORATION TO SPACE MANUFACTURING

In summary, surface evaroration of materials has the following impor.ant appli-

cations or effects relative to spave manufacturing of materials.

6.1 MATERIAL LOSSES

Data have been presented to show, for example, how the solute Al in a uniformly
heated, 6.0 x 10-3-—m sphere containing 8 percent by weight of Al in Ni evaporates. The
losses of material, mostly Al at, and the times to reach, various weight fractions and
surface concentrations are given. The preferential evaporation of A1 makes it difficult to
control sample weight, size, and compcsition. The Al vapor coats the vacuum chamber
walls and, more seriously, the nearby samples in the Skylab experiments. Worst of all,
the electron beam source for heating these samples may be contaminated to the point of
erratic electron emision and loss of control. As a result of these disadvantages, which
were partly confirmed by actual simulation ruas, the A1-Ni alloy was dropped as a

sample material for the M512 experiment.
6.2 EVAPORATIVE PURIFICATION

Evaporative purification would benefit the following processes: flnating zone
melting; single crystal growth; thin film growth; and preparation of materials standards.
As shown, we presented quantitative data on the purification of nickel alloys with aluminum
as a solute. We further described, in some detail, the evaporative purification behaviors
of nickel-iron and nickel-chromium alloys. The purification of beryllium containing nine
impuritizs in the ppm range was separately treated. Three reports have been published
on these data and the necessary predictive equations, and submitted for outside publi-
cation. A paper on eveporation prepared under the contract was also presented at the

AACG at Princeton University in July, 1972,

Not fully appreciated, it appears, is the fact that evaporative purification is
relative, in terms of speeds and results. It is also a two-edged sword. Thus, while
with some elements evaporating faster than the solvent we have evaporative purification,
with other elements evaporating slower than the sulvent we have evaporative (surface)

contamination or enrichment. A freely suspended molten drop in space may, rfor
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example, have its surface solute cuircentration enriched a thousandfold or a millionfold
by neglected and undetectable trace impurities within a fraction of a second of its
deployment. From there on, evaporative purification may be completely negligible,
for any practicai length of time. Furthcr, evaporative purification or (surface) con-

tamination can be so fast as to be unavoidable, or so slow as to be practically non-

existent.
6.3 "ANOMALOUS'" MELTING AND SOLIDIFICATION

Because of evaporative segregation, anomalous '"constitutional” or evaporative
melting (on cooling) and solidification (on heating) cau occur, as shown above. We have,
therefore, pointed out that any sclidification stady, particularly on nucleatior, must be
preceded by an evaporation compatibility study, We have also sugyested unique aud defini-

tive solidification experiments that circumvent or minimize the evaporation effects.

6.4 DIFFERENTIAL EVAPORATION +ND JETTING ACTION

Different rates of evaporation at various surface regions, such as thosc resulting
from nozzle detachment, temperature gradient, cr surface conamination, give rise to
unbalanced forces and '~umenta that may produce erratic or unwanted accelerations.
Very large "equi-valent gravities" may be produced. Another effect of such jetting
actions may be the formation of powerful convection curronts with entirely new charac-

teristics that can not be directly correlated with those of other convection currents.

6.5 SURFACE COOLING

Evaporation requires the absorption of the heat of evaporation. Surface cooling
therefore results. For nickel at its melting point of 1726K, the evaporative surface
cooling comprnent is about four orders of magnitude smaller than the radiative cooling
component and is, therefore, prohably negligible. For iow-melting materials, particu-
larly those having high heat of evaporation, the evaporative cooling component may be
very important. Work by Dr. Thu:nas T. Kassal of the Grumman Research Department

with water or brine streams jetting into vacuum demonstrates the inpeciance of surface
cooling in ice formation.
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6.6 MATERIALS STANDARDS

Properly controlled evapnration, particularly in space, allows us to obtain
material purity or evaporation standards, thermal properties, and even basic thermo-

dynamic constants.
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PART II

FREEZING SEGREGATION

This section on freezing segregation represents, in part, a review paper the
principal investigator has been asked to prepare for inclusion in "Advances in Materials
Science." While this work was not done under NASA support, it is included for the sake

of completeness and because of its relevancy.
Section 1. INTRODUCTION

In this section, we will discuss the normal freezing process, and its application to

steady-state solidification in the Ni-Sn system.

In the first part of this section, the normal freezing process is described in some
detail. The assumptions, its industrial application and importance, the normal freezing
differential equation and its solution for the various cases are given. The meaning of the
segregation coefficient k is then discussed. The best value of k and the errors involved
in assuming constant k for various cases are studied. Finally, numerical computation

of the normal freezing process is exemplified.

The formation of spirals or screw dislocations and other defects has always received
great attention because these defezts make all materials very weak compared to their
theoretical potentials. During this contract, new spiral growth observations on barium
st itium niobates grown under controlled conditions were made. These observations
carnot be expliined by the classical core-first growth theory (or BCF model) A new
mechanism was therefore developed to explain them. We believe that knowledge of the
formation mechanism of these and other defects will enable us to control or eliminate
them in space manufacturing and other operations. Details of this new mechanism is

given in Appendix F.
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Steady-state solidification is related to the important process of single crystal
growth. In particular, the critical temperature gradient must be accurately determined
in order to achieve interfacial planarity and single crystal growth. We used a non-
constant k approach to situdy the steady-state growth of Ni-Sn alloys. Our results show
that assuming constsnt k may introduce intolerable errors in predicting solidification

behavior in generai and single crystal growth in particular.
Section 2. THE NORMAL FREEZING PROCESS

In normal freezing, we assume that the liquid is completely mixed, that no atomic
diffusion occurs in the solid, and that the compo..itions of the freezing solid and liquid,

respectively, follow the solidus and liquidus curves of the constitutional diagram.

Since the liquid is completely mixed, there is, effectively, infinite diffusion in the

liquid. The liquid is, therefore, always homogeneous. Solute pile-up in front of the

liquid-solid interface is not possible and solute concentration at this interface is, therefore,

the minimum possible. The equilibrium solute concentration in the freezing solid is also
minimal. Thus, the interface acts as if it were an efficient atomic filter, allowing pure
solvent atoms to freeze out together with .he minimum amount of solute atoms while
keeping the maximum amount of solute atoms in the remaining liquid (for the case where
the segregation coefficient is less than 1). Thus, normal freezing is the most efficient
purifying or segregating process, as far as separating solute and solvent atoms in the

liquid (according to the constitutional diagram) is concerned.

In contrast to i-finite liquid diffusion, the solid diffusion is zero during normal
freezing. Thus, all the (solvent and solute) atoms stay exactly where they first freeze
and remain completely and forever immobilized. Justifications of these assumptions,

as well as additional comments and implications, will be more fully described.

Normal freezing is a useful and important ideal limiting case, as is infinitely rapid
quench or splat cooling. In the rapid freezing process, time is not allowed for any solid
and liquid diffusica, or even equilibration, according to the constitutional diagram. The
effective solid and liquid diffusion constants are thus zero. The solute and solvent atoms

are instantly frozen, in situ, from th: melt; and the constitutional diagram is completely

2-2
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irrelevant. There is also no solvent purification or solute segregation. In practice, when
the characteristics distance dc’ defined as the liquid diffusion constant D 1 divided by the
growth rate v, falls appreciably under the resolution limit of the detecting instrument, the
frozen material appears to be homogeneous and the freezing process is practically identical

-4 2,
to that of an infinitely rapid quench. Since D_ is generally about 10 ~ c¢cm . sec, a growth

1
rate greater than 10 cm/sec from a severe quench yields a characteristic distance of
dc = Dl/Kv = 1um. Such a frozen material would thus appear homogeneous under the

electron microprobe, which has a resolution of about 1 pm.

Annther useful and limiting freezing process is equilibrium freezing according to
the level rule. Here, both the liquid and solid are homogeneous, and the liquid-solid
interface is perfectly permeable to the solute and solvent atoms. At all times, the liquid
and solid are in equilibrium according to the censtitutional diagram, and unique,

"equilibrium segregation” results obtained.

Any actual freezing results must fall within these maximum segregation, no
segregation, and equilibrium segregation limits. For some alloys systems, the limits
between maximum and equilibrium segregation results may be only a few percent apart
(Li, 1966). Further, the relative proximity of practical freezing results to either of these

limits can often be at least qualitatively predicted bv a study of the freezing conditions.

Among the three methods, normal freezing is generally the most important since
it gives the maximum solvent purification or solute segregation, the purest possible
single crystals, and the most defect-free devices or structures since many defects are
often associated with segregated impurities. Also, it is particularly valuable in the pre-
paration of many material specifications which call for precisely these limiting case con-
ditions and require the maximum initial solute content, the maximum defect size of a

given type, the maximum grain boundary thickness for grains of a given size, and the like.

Normal freezing often does not represent the true freezing conditions. This is
particularly true in dendritic growth when the growth velocity is high and solid diffusion is
negligible (normal freezing assumption 2) but liquid diffusion is not «-omplete (normal

freezing assumption 1;. With single crystal growth, the growth speed is often orders of

2-3
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magnitude lower, solid diffusion is still negligible, and the liquid diffusion conditions are
more nearly normal. In addition, if the melt is mechanically or induction stirred, the

melt may be indeed nearly homogeneous and normal freezing conditions are realized.

Even a lack of normality does not detract from the usefulness of the normal freezing
methodology. This is partly because actual freezing conditions are more or less normal.
The departure from normality can be predicted and actually evaluated, as will be shown.
Further, normal freezing gives limiting results which are useful for writing materials
specificc ‘ions. As will be shown, normal freezing conditions give, at each step during
the freezing process, the maximum crystal purity possible (for the usual case where k < 1).
Thus, normal freezing calculations wllow us to prescribe the maximum initial impurity
concentration to achieve a given minimum degree of purity in the final product, a given
thickness of grain or cell boundary thickness, or even given mechanical properties such as
creep and ductile-to-brittle transition temperature. In addition, abnormal conditions
such as limited liquid diffusion and loss of materials through surface evaporation or

chemical reaction can be accounted for, as will be shown.
2.1 NORMAL FREEZING AS USED IN THE SEMICONDUCTOR INDUSTRY

Normal freezing techniques has been successfully used in the semiconductor
industry and are indispensible in such areas as material purification, single crystal
growth, dopant control, diode formation, and liquid epitaxy. Here, the conditions dis-

cussed lelow are most favorable for the use of these techniques.

The most common germanium and silicon materials are very pure. They generally
covntain only ppin or ppb of impurities and are, therefore, orders of magnitude purer than
most other pure materials. We are thus dealing with extremely dilute, simple or ideal

solutions.

There is a critical need for control, at microscopic distances, of absolute depant
levels to ppm (~ 1018/cc) or ppb (~ 1015/ cc). Even the dopant concentration gradients at
these extremely low concentration levels and small distances are critical. In fact, even
ppb of wanted or urwanted impurities can radically change the characteristics of the

resultant semiconductor devices.
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Only a portion, often a small portion, of the solidifie1 material is used; and the
solidification range of interest is often exceedingly narrow. In the growth of single crystal
of pure germanium containing 100 ppm of antimony in the melt, for example, the growth

o
starts at 1209.10K or 935.98 C (k1209.10K
(k

1208.12K - 0.275), and over 98. 0% of the melt by weight (representing more than the

= 0.276), and ends at 1208.12K or 935°C

material of interest) is grown (Li, 1966). The liquidus and solidus curves of interest can
be represented by two tiny straight lines extending over solute concentration ranges of only
4,660 and 130 ppm, respectively, over a temperature interval of 1°. The segregation is
constant at 0. 276 to within the third decimal place. Again, in the growth of a germanium
alloy diode with a 50-micron indium sphere, only the first 0. 1-micron linear distance
(representing less than 0. 5% by weight solidified) is critical in the formation of the pn
junction (Li, 1966). Here, the useful solidified portion is extremely small, as is the
solidification temperature range of interest. The segregation constant k is, therefore,
again constant. Pfann's constant-k, normal freezing equation (Pfann, 1952) thus finds its

ideal application.

Most germanium and silicon alloys have extremely low solute, solubility limits in
the solid., According to the constitutional diagrams (Hansen, 1958), germanium alloys
containing Ag, Al, Au, Cd, Co, Cu, Fe, In, Mg, Mn, Ni, Pb, Sn, Te, Tl, and Zn, and
silicon alloys containing Ag, Al, As, Au, Ca, Ce, Co, Cr, Cu, Fe, In, Mg, Mn, Nb,
Ni, Pd, Pt, Sb, Sn, Ti, and Zr, have invisible solidus lines. Only germanium alloys
containing As, Bi, Ga, and Sb, and silicon alloys containing U, have some visible solidus

lines that are very close to the vertical temperature axes.

The segregation coefficients for the above germanium and silicon alloys are very
small, being close to zero. Also, the solute material frozen in the solid is negligible,
and does not appreciably affect the fraction solidified. It is therefore possible to con-
sider multiple, non-interacting dopants in the same crystal for the determination of the

pn junction depth. Extending this app~oach indiscriminately would be misleading or
meaningless. Unfortunately, this has been done.

i
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2.2 EXAMPLES OF CONSTITUTIONAL DIAGRAMS

Figure 2-1 shows several common types of constitutional diagrams that we deal
with in solidification studies. Figure 2-1(a) represents a simple eutectic system typified
by the Pb-Sn alloys. Here, solid @ or Pb crystals are shown to have different concen-
trations of Sn, reaching their maximum Sn concentration of cs“ at the eutectic temperature
of 456. 1K (183°C) as described by the left, or Pb-rich, solidus line. Similarly, solid B
or Sn crystals also have different concentrations of Pb, also reaching their maximum Sn
concentration of Ceu at the eutectic temperature, as represented by the right or Sn-rich
solidus line. At each melt temperature, the @ or B crystals are in equilibrium with only

one single melt composition, as determined by the appropriate liquidus line.

Figure 2-1(a) also shows that the four liquidus and solidus lines are far from being
straight lines. The liquidus and solidus of the Sn-rich alloys may be approximately
. :presented by quadratic functions of the melt temperature. The liquidus and solidus of
the Pb-rich alloys, on the other hand, would probably be more adequately fitted with
cubic equations of the melt temperature. The exact degree of such fits should, however,

be determined objectively by statistical tests (Anderson and Bancroft 1952).

Figure 2-1(b) shows the complete constitutional diagram for the Au-Ag system. In
this system, the Au and Ag are completely miscible, both in the solid and liquid phases.
Hence, there is only a single liquidus and a single solidus for the entire system, instead
of the two liquidus and sclidus lines shown in Fig. 2-1(a). It is immaterial whether we
consider Au or Ag as ihe svlvent. It is even arbitrary or artificial to consider the major
constituent as the solvent and the minor constituent as the solute, since such a designation
depends on whether weight percentages or atomic percentages are used as the classifying
criterion. Thus, an a.loy containing between 50 to 67 weight percent of Au would be
considered as an alloy of Ag in Au if weight percentages are used and, yet, should be
considered as an alloy of Au in Ag if atomic percentages are used as the classifying cri-

terion. In many other systems, such as W-C, Ta-C, and W-B, this disparity is even

wider and the designation of one component as the solvent or solute is even less meaningtul.

It would, therefore, be better to identify an alloy of, e.g., 10% of Ag in Au simply as
such; or, interchangeably, as an : lloy of 90% of Au in Ag.
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Fig. 2-1 Sorme Types of Constitutional Diagrams
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A good system of solidification methodology, in particular the normal freezirg
equation, should be a self-consistent one. It will be shown using this Au-Ag diagram

and several other considerations that the constant-k method is not such a system.

Figure 2-1(c) shows the Cu-Au constitutional diagram. This system is characterized

by having very large solid solubilities at either terminal region.

Figure 2-1(d) shows the Au-Zn constitutional diagram, rev-zaling the presence of a

number of intermetallic compounds, i.e., AuZn, Auan, and AuAnS. Furt .er, at the

compositions of the firsi twe compounds, the liquidus and solidus reach their peak tem-

peratures. In many such systems invoiving intermetallic compound formations, the liquidus

lines, and even the solhidus lines, have horizontal tangents (k = o/@ = indefinite) at their
peak temperatures at the most important compositions. This condition has important im-

plications in the determination of the segregation coefficients k, as will be describe.l.

Figure 2-1(e) shows a portion of the Fe-C diagram. An interer ing feature s that
a peritectic reaction occurs at a Tr of about 1765K (or 14920C). At this temperature, the
solidification process is discontinuous, A small portion of the Fe-C system has two
distinct liquidus and two distinct solidus lines, one set above and one set below Tr' The
slopes of the two liquidus lines are discontinuous at Tr' Not only are the slopes of the
two solidus lines discontinuous, but even the values of the solute concentrations in the
solid, i.e., cs, are discontinuous. Specifically, cs changes abruptly from 0.10% at
slightly above Tr to 0. 18% at slightly below Tr' The study of solidification of Fe-C
alloys in this portion of the diagram thus requires dividing the solidification process into
two regions, one above and one below Tr' In each region, a unique set of liquidus and

solidus lines should be used.
2.3 THE NORMAL FREEZING DIFFERENTIAL EQUATION

Let cl and g be functions of a modified melt temperature T = Te - Tm' where Te

is the fir2d melting point of the pure solvent and Tm is the variable melt temperature

(Fig, 2-2), Thus:

Py

r T g
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Fig. 2-2 The Normal Freezing Process
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c1 = I(T)

cS = §(T)

where L(T) and S(T) are functions of the modified melt temperature, for the solidus and

liquidus curves of the constitutional diagram.

At the be zinning of normal freezing, time t = to = 0, the fraction solidified p = P, = 0,
¢e,=¢, =¢,T=T ,andk=k, =S(T )/L(T_), where T can be determined from
1 lo (0] o i o] o o
¢, = L(To). The frozen length is8 x = X = poH = 0, where H is the total melt or crystal

length.

At t = t, the fraction solidified, frozen length, and modified melt temperature are,
respectively, p, x = ph, and T, At the end of the next short time interval At from t, these

values will respectively increasetop + Ap, x + A x, and T + A T.

Balancing the amount of solute Q in the remaining melt at time t according to a

general nrocedure previously described (see, e.g., Pfann 1952) gives

aQ-= -cBAp =48 [(l-p)cl] -f1 (cl, At, T, ...) (24)

where f 1 represents the loss of solute from causes such as surface evaporation and

chemical reaction. This loss may depend on cl, At, T, melt volume, or free surface.

In many cases, f = 0. If we then take the limit as At, & p, Ax, and AT all

1
approach z:ro, we obtain the following basic diiferential equation for normal freezing:

dp/(1-p) = =d In(l-p) = [L' (T)/ [L(T)-S(T)] }dT (25)
where L'(T) is the temperature derivative of the liquidus curve L(T).

In the above derivation, c_ and ¢, may be in terms of weight fractions. Q then

1
represents the weight of solute in the liquid melt for each one gram of original melt. If,

however, ¢, and c, are in terms of atomic fractions, Q then represents the number of

1
moles of solute atoms for each mole of combined solvent and solute atoms in the original

melt.

2-10
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2.3.1 Constant-k Normal Freezing Equation

In a few cunstitutional diagrams, ihe liquidus and solidus curves can be approximated
by straight lines. When we are dealing with very narrow ranges of freezing temperature,
solute concentration, or fraction solidified, such as in the previous examples of growing
pure germanium and silicon crystals and of forming germanium alloy diodes, the portions
of the generally curved liquidus and solidus lines of interest may be so small that they

can be represented by two straight lines. We then have:

cl=a’I‘+e1

¢c =fT+e
s s

where a and f are the slopes of .he liquidus and solidus lines, and e 1 and e  are the

inter~epts of these lines, when extended, on tke vertical temperature axis (see Fig. 2-2).

The normal freezing differential equation, Eq (25), then reduces to

dp - a d
(1-p) (a-f) T + (el'es)

T

This equation is easily integrated. When proper initial conditions are included, we obtain

the following general, constant-k, normal freezing ernation:

[(a-f)’r + (e 1-es)]a/ (f-a)
l-p=
(a-f)To + (el-—es)

(26)

When pure germaniuu. crystal or diode materials are dealt with, only the termina’
regions of the constitutional diagrams are used. The twe -hort liquidv: and solidus liues

then usually both pass through the melting point of pure germanium, and both e, and eB

1
are zero. Equation {26) then reduces to the familar, constant-k normal freezing

equation:

(f-a)/a

_ _ _ . el k-1
T/T0 = aT/aTo = cl/co = cs/kco = (1-p) = (" -p) (27)

2-11
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This equation is so important in materials processing, particularly in the semi-
conductor industry, that it has been repeatedly derived (Gulliver 1922, Scheuer 1931,
Hayes 1939, Luneau 1942, Mathier 1942, Scieil 1942, McFee 1947, and Pfann 1952).
An analogous equation, known as Rayleigh's equation, has also been derived and used

for '"'simple' distillations in chemical engineering (Rayleigh 1902).

2.3.2 Accuracy of the Constaiat-k Normal Freezing Equation

According to Christian (1965), Pfann's equation applied to reasonably dilute
solutions, is a useful approximation until some 80% of the liquid has solidified, that is,

until p = 0. 80.

Dowd and Ro e {1953) studied the distribution of radioactive indium in germavnium,
and concluded that the indium concentration obeyed Pfann's equation. On the other hand,
Goruw and Jentoft (1967), in evaluating the effectiveness of normal freezing, column
crystallization, and zone melting of n-CMH30 in n-C16H34, found that the segregation
coefficient is a linear function of the solute concentration in the melt,

Kurgistsev (1967) analyzed .he ptoblem of determining k trom experimental dat~

and showed that the methods which reduce this problem to that oi finiling a solution of the

equation on the assumption that k is constant lead to erroneous results.

Brody and Flemings (1966) analyzed their data on the A1-Cu system using their
semi-theoretical, constant-k normal freezing eyuaticn. They emphatically conclu.ed
that the constant-k equation gives "accurate' results, although they had to raultiply their
experimental data by an unfounded factor of three to achieve reasonable fit . Johnston
and Tiller (1962) considered the problem of the segregation coefficient k, o1 effective
s-gregation coefticient k, varying as a function of the interface position (or p), and
determined some of the functions required to produce particular solute distributions in
the solid. Wilcox (1964) alao considered ke to vary with cs. and set up the necessary

normal freezing and zone melting equations for numerical integration.

2-12
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Pfann (1958) stated that the linear normal freezing equation, Eq 27, does not
describe the complete freezing hehavior for the whole length of the ingot. The complete
concentration curve, however, can he calculated by Hainming's method (Pfann 1958)

by taking the dependence of k on the concentration into account.

2.3.3 Non-constant-k, Normal Freezing Equations

As pointed out above, Eq (27) has Leen very successfully used to determine gross
concentration profiles in the useful crystal, and other solidification behavior, of pure
germanium and silicon materials. This is true even when the liquidus and solidus lines
are distinctly curved (Li, 1966) due to the unique conditions previously described. In
other normal freezing studies related to general metallurgy, however, the entire
solidification range must be considered. Such studies include the investigation of the
segregation of trace impurities at grain, subgrain, cell, or subcell boundaries; the
formation of freezing-in or induced point, line, surface, and massive defects in elec-~
tronic or structural materiais (Li, 1967b); the selection of homogenization, oxidation-
precipitation, diffusion-reaction, or other heat-treatments from the calculated dis-
tribution cf alloying elements in polycrystalline welded or soldered joints; and.the magni-
tude and character of voids or vacancies, and of v2sidual stresses or strains, in castings,

caused by variable solid and liquid material densities.

2.3.4 Quadratic Liguidus and Solidus Lines

When the solidus and liquidus can be represented by second-degree functions of the

melt temperature T =T -T, {.e.,
m e

T 2 = -e - 2
c1 aT + bT"™ = a(Te 'I‘m) t b(Te Tm)

2 2
- + f‘ - r{ -
¢, = (T +gT 2HT ST ) + 8T -T )

Eq ¢1) then becomes:

(a-20T) ¢T

(r-0)T + {b-g)’l‘2

-d 1In({-p) =

2-13
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Hence,

2
= 1 |(a-f) + b-g)T
1-p (T/To) [(a-f) N (b-g)To] (28)

where Q1 = a/(f-a) and Q2 = (ab+ag-2bf)/(f-a) (b-g), as given by Li (1967a).

Li further showed (1967a) that Eq (28) reduces to Eq (27) only under the restricted
conditions of very dilute melts, nearly straight liquidus and solidus lines, and very
small solidification ranges. Hence, when one or more of these conditions are not met,

the use of Eq 27 in normal freezing studies requires caution.

2.3.5 Cubic Liquidus and Solidus Lines

An examination of binary constitutional diagrams (with k < 1) reveals that, of 171
binary diagrams given in the ASM Metals Handbook (1948), 36 (or 21%) have distinctly
cubic liquidus and/or solidus lines. It is, therefore, desirable to derive the normal

freezing equation for cases with cubic liquidus and solidus lines, i.e., when:
c1 = I(T) = aT + bT2 + dT3
2 3
cS=S(T)=fT+gT + hT
For this case, Eq (25) reduces to (Li, 1968):

3 Q Q Q
(a+2bT+3c;l‘ldT 3=_%d.“__Z_ dT + —2 4T
(a-D)T + (b-g)T + (d-h)T

~d -p) =
1n(1-p) Tou Tov

where

u= [b-g-d(b-g)z - 4(a-f) (d-h)]/z(d—h)

i

v

[b-g - J(b-g)z - 4(a-f) (d-—h)] /2(d-h)

~a/uv(d-h)

Q

Q, = -[uv(3du-2b) + av] /uv(d-h) (u-v)

2-14
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Q = -[uv(zb-adv) + au]/ uv(d-h) (u-v)

and
Q Q Q

2 3
1/T+u T+v
1-p=(T/T) (To“‘) (To”) (29)

2.3.6 Quartic and Higher Degree Liquidus and Solidus Lines

Here, the liquidus and solidus lines, L(T) and S(T) respectively, can be repre-
sented by two polynomials in T such that L(T)~S(T) is an nth degree function, and the
degree of L'(T) is less than n, Then, Eq (25) yields (Li, 1968):

n n
-din(1l-p) = { L' (T)/ [L(’I‘)-S(T)] } dT = Ql/(T-Ti) dT = ) Q,d In(T-T))
i=1 i=1
from which
n -Q
1-p= T [(T-Ti)/(TO—Ti)] (30)

i=1
the Ti's are the roots of the polynomial L(T)- S(T), and the Qi's are the numerators of
the various partial fractions for the function L'(T)/ [(L(T)-S(T)].

2.3.7 Ideal Binary Sysiems

In an ideal solution having an ideal, dilute solid solution in equilibrium with a
simple melt solution (Panish and llegems 1970), the liquidus curve (in mole fraction) is

given, according to Prigogine and Defay (1954), by:

c,=1-ex [(l/To-l/T)AH/r] =1-exp(atb/T)=1-U
where AH is the molar heat of fusion, To is the absolute melting temperature of the pure
solvent, T is the absolute melt temperature, b = - AH/R, a = -b/T, and U = exp (a+b/T).

For an ideal solution in equilibrium with a dilute ideal solution, the segregation
coefficient for the dilute component can also be shown to be an exponential function of

the reciprocal absolute melt temperature, both theoretically (Hildebrand and Scott 1950;

2-15
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Thurmond and Struthers 1953) and experimentally (Hall 1957; Orioni and Hall 1958). Thus
k=exp (f' +g'/T)
and the equation of the ideal solidus curve is

c = exp (a+b/T) exp (I' + g'/T)=exp (f+g/T)=V,

where f', g', f=a+f, and g=b + g' are constants, and V = exp (f + g/T).

The basic normal freezing, differential equation, Eq (25), then becomes:

exp (a+b/T) (—b/TZ)dT
exp (atb/T) - exp (f+g/T

-din(1l-p) =

Hence (Li, 1971),

- Q
1|2 (a+h/T) [exp (f+g/T) - 1 b/(g-b) _(U/v-1 1 31
P=lexp (a+b/To)7éxp (f+g/T0) -1 - ( UO/VO-I (31)

where T_ = b/ [ln(l-co)-a], U, = exp (atb/T ), V= exp (f+g/T ), and Q = b/(g-b).

2.3.8 ldeal Ternary Systems of the Pseudobinary Type

Many ternary liquid solutions are ideal in that the A, B, and C atoms in the
solution are solidified into ideal solid solutions of AB-AC with the A atoms on one
sublattice and B or C atoms on the other. Such systems can be treated as pseudobinary

systems.

In such systems, the mole fraction for the AB compound in the solid is (Panish

and Ilegems 1970):

c:‘B = (1-V)/(U-V)
where U = exp (a+b/T), V = exp (f+g/T), b = —AHAB/R, a-= —b/TAB. g= -AHAC/R,
f=-g/T AC’ AH AB is the heat of formation of compound AB at its absolute melting

point T AB’ and AH AC is the heat of formation of compound AC at its ahsolute melting

point T AC

2-16

The mole fraction of B atoms in the liquid solution is (Panish and Ilegems 1970).




R

AR R TR T AL SRt e Rt Al B o TN

L

[ T

&%

-

o,

-

.
“&mu—« e o

-

i

T

PR e
1

B AB
cl-ch /2

A B C
By introducing chemical molar concentrations m , m , and m ', we can balance
the amount of B or C in the remaining liquid. Thus, by accounting for the amount of B
in the liquid, QB’ Eq (25) becomes (Li, 1972):

Q Q Q
_ v[ba-v) - g1-uy] _[ 1 2 3 ]
-din(l-p) = e aove aovy/ o) VYD = I v ¢ oy dvm

Hence,

1-p= 1 l 1 (32)

where
Q, = 9/(a-1),
Q, = 1/(1-s),
Q, = r/(1-1),

q = exp (f-ga/b),
r = exp [(ag-bf)/ (g-b)]
s = exp [(bf-ag)/g]

To’ the initial freezing temperature, can be determined from the pseudoliquidus

line by substituting the initial melt composition clAlz for ch .
14

Complete details of the derivation of Eq (32) and its application to the theoretical

computation of the normal freezing behavior of GaAlAs system is given in Appendix D.

2-17
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2.3.9 Summary of Normal Freezing Equations

The closed-form, normal freezing solutions described above, but expressed in

alightly diffe ~ent torms, are given as follows:

® Linear
1
c o k-1
8 _ k-1 _ q2 _,_ (X
kc—(l-p) orl-p—l-ps—[c] =1 (T
o) o o
® Quadratic
Q Q
l-p= T 1 a+bT 2
p—(T ) <a+bT)
o o
® Cubic
Q Q Q

2 3
1-p_[T -Tl] [T —TZ] [T -T3]
= - — -
To Tl 0 Tz,. To Ta

® General Polynomial

® Simple Binary Solutions

® Psgeudobinary

T T A
1-p= 1-U 1-v 1-U/V
11 -1 1oy 1-U /v,
o] 0
2-18

(27)

(28)

(29)

(30)

(31)

(32)

¥ aoeeonmd oo thans

g 2%



220 R PR W S R RRIRYE E 2T T L e

e

ot

»

AT A A

R

e N ]

CRArLAN e T gL

 onad

! lmmwmwwmmm a w;f‘ i
W ey ey

i

& oy
*

i ¥
¢

'y
H

[ b -

o seal
PR

o
S

Wk S o 2y
A ~

-
1

o
i [}

e aiay
TRty Y ne

e

2.4 APPLICATIONS OF NORMAL FREEZING EQUATIONS TO SOLIDIFICATION

Application of the various normal freezing equations to solidification problems
will now be described, with emphasis placed on the constant-k normal freezing equation
(or Pfann's Equation) which is so important in the semiconductor industry. Specifically
considered are several methods of fitting straight lines to liquidus and solidus curves;
the meaning of the constant segregation coefficient; the best value of a constant segregation
coefficient for a given solidification problem; and errors in the use of a constant k when
the liquidus and solidus are curved. Next, we will show that the last portion of a freezing
melt must be a eutectic having a fixed composition, i.e., the eutectic composition.
Finally, we give two useful numerical computation methods, i.e., the Runge Kutta Method
and The Finite Difference Method, to treat cases not covered by the various normal

freezing equations given above.

2.4.1 Fitting Straight Lines to Liquidus and Solidus Curves

Most liquidus and solidus lines are more or less curved. There are many ways a
straight line can be fitted to a curve. The most obvious method is to fit a straight line
through the discrete data points (obtained experimentally or from the constitutional
diagram) to minimize the sum of square of the residual errors (line 1, Fig. 2-3a). This
is the standard, least-square fitting technique (Anderson and Bancroft, 1952). IFor most
solidification work, however, this technique is improper. In the case of pure Ge, Si, or
other materials, particularly during single crystal growth, we are mainly interested in
the terminel region (around the point E) of the constitutional diagram. Line 1, however,
often gives the highest errors in these regions. Further, these [itted lines often cannot
be used in the various freezing equations, failing even to meet at point E for zero solute
concentrations. These lines are thus physically unsatisfactory and often meaningless,

Moreover, line 1 does not give the correct eutectic composit‘ons.

A second fitting method is to pass both straight lines through the melting point of
the pure solvent (i. e., point E), while still minimizing the sum of squares of the residual
errors (line 2, Fig. 2-3b). Unfortunately, most liquidus and solidus lines have curvatures
around point E. If these lines are convex upward, line 2 will consistently underestimate

the melt temperature for a given solute concentration, and vice versa. Further, the

2-19
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Fig. 2-3 Methods of Fitting Struight Lines to Curved Liquidus and Solidus
and Their Associated Segregation Coefficients
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all-important segregation coefficient k is markedly off, particularly when one of the
liquidus and solidus lines is convex upward while the other is convex downward. The
estimated eutectic compositions may be erroneous and useless in eutectic solidification

work or in estimating the eutectic thickness at the grain boundaries.

Another method, particularly useful for dilute solutions or pure materials, is to
pass the straight lines through the point E and tangent to the liquidus or solidus curve
(Fig. 2-3c). These fitted straight lines, however, generally give the greatest errors
in the estimated eutectic compositions. Further, for many liquidus curves, particularly
those for intermetallic compounds, the liquidus is often nearly horizontal at the terminal
region. The segregation coefficient k:kET must then be zero or nearly so. The
constant-k, normal freezing equation, Eq (27), then reduces to the meaningless form

¢ =0,
S

In Fig. 2-3d, the two straight lines pass respectively through the ou and clu
points while minimizing the sum of squares of the residual errors. While this set of
lines is sometimes sufficient for eutectic solidification work, it is evidently inadequate

for work on pure materials or dilute solutions.

Figure 2-3e shows a set of fitted, straight liquidus and solidus lines that intersect
the same Cau and clu points, as in Fig. 2-3d, but are tangent to the respective liquidus
or solidus curves. For most eutectic solidification with initial melt compositions near

the eutectics, this set of straight lines is superior to that of Fig, 2-3d.

Figure 2-3f shows a set of fitted straight lines that pass through the points E and

Cou or clu' The segregation coefficient k = kE

here.

U is seen to be greatly overestimated

There are other methods of fitting straight lines. We could, for example, assign

different weights to different temperature or concentration ranges. These methods are,

however, too specialized to be discussed here.
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2,4.2 The Meaning of Constant Segregation Coefficient

With a few exceptions, such as Tiller (1962), Wilcox (1964), and Rubenstein (1971),
practically all researchers in solidification assume a constant segregation coefficient k
and, hence, perfectly straight liquidus and solidus lines on the constitutional diagrams.
This coefficient k is generally defined as the ratio of solute concentration in the just
frozen solid to that in the remaining melt, i.e., k = Cs/cl' The values of cS and Cl may
be obtained experimentally or from the constitutional diagram. When dealing with dilute
solutions or pure materials such as Ge, Si, W, or Ti, we find that both cs and Cl
approach zero and, hence, k = 0/0 which is undefined. In this case, we define k as the
ratio of the slope of the solidus at point E (Fig. 2-3) to the slope of the liquidus at the
same point. Thus, k becomes k0 = kET of Fig. 2-3c. If Cq and ¢ ) are fitted by two

S i nood
n-degree polynomials of the melt temperature, i.e., ¢ = £ fT andc, = ¥ aT,

i=1 f 1 i=1 .

then ko = k___ is the ratio of the first fitted coefficient in the solidus equation to that

in the iiquicEi:t;I; equation. Thus, ko =f 1/ a,.

It has been shown that none of the several methods of fitting straight lines to
curved liquidus and solidus generally give accurate results in solidification work.
Basically, it is impossible to accurately fit straight lines to these curves. The six
segregation coefficients, each given for a particular type of fitting in Fig. 2-3, usually
differ widely in value. Each is useful only in its limited range of application. Given a
specified solidification problem, it is often difficult to decide which constant k should
be chosen. Even with a properly chosen k, when a specific initial melt composition is
given, the beginning of solidification and, hence, the solidification range, cannot
generally be correctly ascertained. The upper ends of the fitted straight lines in Fig.
2-3a, 2-3d, and 2-3e do not even intersect at the point E, as they should. Ridiculous,
negative solute concentrations and, hence, negative segregation coefficients may therefore

appear.
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Each of the several types of fitted straight lines in Fig. 2-3 gives a unique type

segregation constant valid only in certain solidification applications. None is generally

useful, each being often greatly different from the others. This is easily seen, e.g.
in the Ge-Sb system. The computed segregation constant from the constitutional diagram,

i.e., k. =c /cl, varies from 0.0276 at the melting point of germanium (i.e., 1209K

CD
or 936 C) to 0.0390 at the eutectic temperature of 863K or 590°C. This represents an
increase of 41.3% (see Li 1966a). In a very dilute solution, e.g., in most semiconductor

work including the growth of nondegenerate germanium crystals, a segregation constant

k = ko = 0.0276 should be used for constant-k freezing equations, such as Eq (27). In

W& a Sb-rich melt near the eutectic composition, however, a k = kU = (. 0390 should be

s |

chosen.

1

In the case of dilute Ge-Sb solution, if we use kU instead of the correct k o’ then

g

bk = kU - k = + 0, 0114, and the percentage error ink is Ak/k =+ 0 413. The percen-

tage errors in ¢ computed according to Eq (27), i.e., Ac/c = (1 + A5 ) (l-p)
are 41.1%, 40.9%, 40.7%, 40.5%, 40.2%, 39.8%, 39.4%, 38.7%, 37.6%, and 36.6%
forp = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95, respectively. The

[ R |

P
1

percentage errors in p computed from Eq (27), i.e.,

ok/k -4k

L EIaET- o
bagd
i ]

Ry .

Ap/P=p -1

are -2.69%, -1.89%, -1.42%, -1.08%, -0.819%, -0.6047, -0.422%, -0.264%, -0.125%,

and -0.00608%, respe: .ively, for the same values of p.

™ ]
pea gy

If, in the case of melts of near-eutectic compositions, we use k0 instead of the

St
R:f

U
==0.292. The percentage errorsin the computed ¢'s are then -29.1%, -29.1%, -23.9%,

-28.8%, -28.7%, -28.5%, -28.3%, -27.9%, -27.3%, and 26.8%, respectively, for the

correct k__, then Ak = k - kU = «0. 0114 and the percentage error in k is now Ak/kU

same ten values of p. The corresponding percentage errors in the computed p's are
now 2.74%, 1.90%, 1.42%, 1.08%, 0.816%, 0.601%, 0.419%, 0.262%, -.124%, and
0.00602%, respectively.

oot

Yet, the Ge-Sb system should be considered as a fairly well-behavicred system.

The possible errors in k and, hence, computed c's and p's using any constant-k freezing
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equations, are even much worse with many other systems. Consider, for example, the
Au-Ag system having a constitutional diagram of the type shown in Fig, 2-1b. Any
Au-Ag alloy can, therefore, be treated either as an Au alloy containing Ag as the
solute, or as an Ag alloy containing Au. Considerins, -+ ..: v as an Ag alloy containing
Au, we see that the ¢ is always greater than ¢

s, Au 1,A

they are equal. The segregation coefficient kAu = kAu in Ag

fact, kAu varies from 1. 000 to over 2. 080, for the temperoture range of 1336K or

" excep! . the end points, where

is thus always>1. In

1063°C to 1234K or 960. 5°C. Considering the same alloy as an Au =)loy containing

Ag, we see cs,Ag never exceeds cl,Ag' Hence, kAg = kAg in Au

In fact, kAg varies from iess than 0.1986 to 1. 000 over the same teinperature range,

never exceeds unity.

representing an increase, of over 600% (Li 1968),

Li (1968) has fitted, by least-square techniques, the Au-Ag liquidus and solidus
curves using straight lines passing through the Au terminal point, and also by quadratic
or cubic polynomials through both the Au and Ag terminal points. According (o the
best-fitting equations presented, the constant segregation coefficient at the Au terminal
point varies from 0, 8781 through 0. 7015 to 0, 7287 for the linear, quadratic, and cubic
polynomials, respectively. Thus, even at the same Au terminal point, the k = fl / a:l
can vary by as much as 25. 2% depending pn the degree of the polynomials chosen. The

order of these k values is also inconsistent with the degree of the polynomials.

Thus, we are often faced with a bewildering array of unique segregation constants
B’ Fig. 2-3b KET' Fig. 2-3c; kU, Fig. 2-3d; kU
, Fig. 2-3f; and k ,.'s such as k k » and k

o oT,

including: kls’ Fig. 2-3a; k
2-3e; k

T Fig.

EU T oT,1’" FoT, 2 q° Any indiscriminate
use of unspecified k is likely to confuse and mislead, particularly with melts of medium
high solute concentrations such as 4.5% by Cu in Al (a favorite alloy system for

solidification study), for which the choice of k is the most abundent.
For any binary alloy system A-B in general, and the Au-Ag system in particular,

the segregation coefficient of one component in the other, e.g., of Ag in Au, is:

/

kAg N c,Ag cI,Ag
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The other segregation coefficient for Au in Ag in the same alloy is:

_[{_
)— -

= = (1~ - = (1-k 1- =
kAu cs,Au cl,Au a cs,Ag) a cl,Ag) a Ag cl,Ag) ( cl,Ag
< - 2] - . y K
If cs.Ag cl,Ag’ then KAg <]l and1 kAg cl,Ag 1 C].,Ag Hence Ay must be
2 : '
1, as observed. Thus, if AinB <1, then kB in A must be >1.

Further, since cl.Ag = LAg(T), kAu caanot, from the last equation, be constant

unless kAg z1= kAu‘ This condition is true only when the liquidus ard solidus are one

and the same curve, in which case Eq (27) reduces to the meaningless form ¢ = cs = co.

Notice that all the above k's refer to a system of cs's and cl's on either the

weight or the atomic scale. That is, the k's are either kw 's or kat‘s. It can be shown

t
that kw t cannot be the same as kat for any two alloy components unless c, =¢ on both

the weight and atomic basis, i.e., only when both the liquidus and solidus are, again,

one and the same. Further, if kw is constant, kat cannot be constant, and vice versa.

t

Hence, both kAu and kAg in the Au-Ag system or kA in B A

system, whether on the weight basis or on the atomic basi= cannot be constant but must

and kB in in any binary

vary with the melt temperature.

2.4.3 The Best Value of the Segregation Coefficient

The best value of constant segregation coefficient kc depends, of course, on the
alloy system. For a fixed alloy system, the best kc varies, as shown above, with the
selection of atomic or weight fractions for expressing the solute concentrations, the
initial melt composition, and the degree and numbe:' of terminal restrictions in the
polynomial fitting of the liquidus and solidus ct sves. A change in the least-square
fitting method (to account, e.g., for the fact that errors occur in both the solute con-
centrations and melt temperatures rather than only in the concentrations or temperatures)
also changes the value of kc. The best kc also depends on the use of the resultant
solidified material. In the manufacture of critical electronic, optical, or mechanical
devices, the objective may be to minimize either absolute or percentage errors in

solute concentrations ¢, concentration gradients cp = de/dp, or other properties related
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to cor cp. The minimization is to be achieved cither over a specified region (i.o.,
hetween two [ractions solidified, p1 or p2) or at a critical location (i.e., at the fraction
solidified, p). The hest kc depends not only on the magnitude of allowable error, but
on whether the error is positive or negative for the same magnitude.  Specifically,

I.i (1967) has shown that if overestimated ¢ values cause more scrious damage than
underestimated c's, then a slightly intlated kc should be used for safety, especially

when kc and p are large,

However, it is always possible to find the optimum kc' for use in Eq (27) for
example, to best /.t any given normal or abnormal freezing data. This is true even
with alloys having distinctly curved liquidus and solidus lines. Further, the errors due
to the assumed constancy of kc can usually be estimated either analytically or by
numerical methods. In the very narrow melt temperature range around Tm =T -7,

e
for cxample, the optimal kc can he determined from Eq (27) and (25).

1-p, = oy (L [l (43)
1 \C T T J+rT '
o 0 0 0

where @ =1/(1-k ), and o 8, and r are defined in connection with Eq (28). Hence
c c ‘

0
the optimized constant kc’ L - T kcp. is such that:

gonitrl
1 +rT
1 op 0
= = —— - (34)
op ¢ T
¢ o
op 1 In;L
il
ork°p P - = 1- 0 for T .. T (35)
c op T 1+rT -
“e afn—=— + asn
T 1+-rT
o
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In the above derivation, the liquidus and solidus curves are assumcd to be
adequately representable by quadratic functions of the melt temperature. In the
general case when the liquidus and solidus are representable only by nth degree

polynomials, the optimized kc is

0 'n——
op ocp -1 T,
K°P= —_ =1+ for T~T (36)
) “zp pn—— + < ’n b
9’ T 29 T-T,
i=2

For a wide solidification range, the optimized kc may be determined by least-

square techniques for the general polynomial) case, such that:

2 1,
kP -1 WPop 1 -9

In practice, the kzp may often be more easily obtained by numerical methods
using a computer. Table 2-1 lists the numerically obtained values of kzp for the system
of Sb in Ge. The kzp is seen to increase with initial melt concentration <, and fraction
solidified p, the increases being greater with larger values of <, and p. The standard
errors in the computed p, computed with these k:p according to Eq (27) and compared
with corresponding p values from Eq (28), can be as small as 3 x 10.12 for c/o =
0.001 and p = 0.01 to 0.2¢.
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TABLE 2-1 OPTIMIZED CONSTANT k, k:p FOR Ge ALLOYS

CONTAINING Sh AS SOLUTE

!

op
k g
c, p o

0.1 .01-.20 0. 028063733 3.60065 x 10~°
.01-.40 0. 02815576 1.11772 x 10"
.01-.60 0.02¢ 492 3.21579 x 10™°
.01-.80 0. 0290365 1.45726 x 102
.01-Tu 0. 0306733 5.88936 x 10

0. 01 .01-.20 0. 0276402 3.19533 x 105
.01-.40 0. 6276481 9.68934 x 100
.01-.60 0. 0276641 2.65315 x 10"
.01-.80 0. 0277130 1.00608 x 10~°
.01-Tu 0. 0293844 7.56718 x 10™°

0. 001 .01-.20 0.1276022 3.19838 x 10”19
.01-.40 0. 0276029 9.66827 x 10 19
.01-.60 0. 0276046 2.62887 x 10°°
.01-.80 0. 0276093 9.81624 x 10>
.01-,99 0. 0277335 5.30022 x 10"

0. 0001 .01-.20 0. 0275833 2.87215 x 1012
.01-,40 0. 0275833 6.24331 x 10 12
.01-,60 0. 0275835 1.12754 x 10”11
.01-,80 0.0275837 6.09533 x 1011
.01-.99 0. 0276087 5.13106 x 10”2
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2.4.4 Errors Due to Curvature of the Liquidus and Solidus Lines

We consider here the errors involved in the use of the constant-k, normal freezing
equation when, in fact, the liquidus and solidus curves are not straight lines. Three
cases are considered: quadratic, high-degree poiynomial, or exponential functions of

the melt temperature Tm.

In the first case, the liquidus and solidus curves can be represented by juadratic

functionof T, i.e.,
m
I(T) =c (T) =aT +bT2=a(T -T ) +b(T -Tm)2
1 e m e
T)=c¢ (T)=1T + 2-fT-T ) +g(T -T )2
STy = (T) = gT =HT T )*+&(T T,

The segregation coefficient k used in Eq (27) should, particularly for such dilute

alloys as semiconductor germanium or silicon and pure Be or Ti, be:
ko = S(T)/L(T)T=o =f/a

Equation (27) then shows that the proportion of liquid remaining is:

p: = l-pi = (C/kco)l/(k-l) 1/(k'1) a/(f—a)

= (cl/co) = (T/To)
According to Eq (28), the proportion of liquid remaining is, however,

a a

——

B f-a f-2
2_. 2_ a/(f-a) [1+-g)T/(a-n ] =/ T b-g .~ LT
Py =1-pg = (T/T,) [1+(b-g)To/(a-f)] = ('ro) [1 +B s (T-Ty) —(To) 1-n(T-T,)

where B = (ab+ag-2bf)/(f-a)/(b-g) and " = (alrrag-zbf)/(a—f)2

To estimate pf by means of p: of Eq (25) thus involves percentage errors

amounting to:

ey

5 "
%‘5@ for g
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T-T )
12 1 g (T-T) ab +ag - 2bf . b

= - = ———— = A T=-T ) = T>2 8
e =(p-P)V/P, =7 o (T-T) ol ) at? 8T =7 4T (38)

This error is thus roughly proportional to the solidification range AT = T-To.
Estimating the amount of eutectics thus represents the worst-case condition for the use
of the constant-k normal freezing equation, Eq (27), particularly when initial concen-
tration <, is small. Error 112 is also inve;sely proportional to the square of the slopes
of the liquidus and solidus lines, i.e., (a-f) . When both a and f are small, i.e., when
the constitutional diagram has very steep liquidus and solidus curves and, in particular,

when a-f is small, 1/(a-f)2 is very large and, hence, very large errors may result.

Examination of Hansen's (1958) binary constitutional diagrams discloses many
systems whose liquidus and solidus are very close at the melting point of the pure
solvent (i.e., k0 =1.0), or are very close at the eutectic temperature when eutectic
growth is of prime interest. For example, binary alloys having ko ~ 1 include silver
alloys containing Cd, Li, and Zn; gold alloys containing Ag, Al, Cd, Co, Cu, Ga, Fe,
Pd, and Zn; iron alloys containing Be, Co, Mn, Ni, Si, and V; and nickel alloys of Cr,
Mn, Ta, Ti, and V. In addition to koaz 1, many systems have liquidus and solid.
adequately representable only by cubic or higher degree functions of the melt temperature.
Such systems include Ga in Au, Cd in Mg, Mg in Cd, Co in Pd, Mo Cr, Cr in Pd, Cr in
Ti, Cu in Pd or Pt, Mn or Ni in Fe, Cr, Cr, Fe, and Ni in Pt, and Ta, Ti, and V in
Ni.

As an example, consider the case of Sb in Ge. Here, a = 4.668 x 10-3. b=
-6.047 x 10'6, f=1.288 x 10’4, and g = -8.222 x 1078 (Li, 1967). Hence,

e12 = -0.00133 x (T-To) =-0.1334T%

The maximum solidification range to be considered occurs when a semiconductor-
grade germanium starts to solidify at about the melting point of pure germanium (i.e.,
1209K or 936°C) but finishes the solidification at the end of a rod or at the boundaries
between subcells or subgreains at the eutectic temperature of 863.1K or 590°C. In this
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case, To = 0 and AT = (1209-868.1)K = 346.1K. The maximum error in the growth
of Sh-doped germanium crystals is thus

¢=:12 =-0.00133T % = -44.7%
That is, the constant-k equation consistently underestimates the actual p1 in the Ge-Sb

system. This underestimation may reach a maximum of about 44. 7%.

As another example, consider Co in Ti. According to Hansen's (1958) diagram,
2. 4.3175 x 107°, 1.4624 x 10'2, and
6.7989 x 10'6, respectively. The value of  may then be computed to be -0.10764%.

coefficients a, b, f, and g are 2.3552 x 10~

Since the maximum solidification range is T = 908.1K, the maximum error is

e12 =0l T = --68.35%
max max

Thus, the amount of the critical eutectics at the grain or cell boundaries in these
alloys, estimated using the constant-k equation, is always lower than the true value by
up to 68.35%.

Often, the liquidus and solidus can be represented only by nth-degree polynomials

of the melt temperature, i.e.,

-7 i_% a (T -T )
-2 aT =.‘ ai(e m)

C
1 =175 =1

T erio% (T T )
cS —i=1 fiT =i£l i( e- m)

The proportion of the remaining liquid is then given by Eq (29):

_

% )k 1-3- /
SRR G T NA & v i N BT NYZ X o] A
3 Ps SimI\T -T T iZ2 T T (T-TZ, +—

o i o 1--,1.—- o i

where Ti and q‘ have been previously defined in connection with Eq (29).
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Hence, the percentage error involved in the estimate of p1 by means of the
constant-k equation (Eq 27) when the liquidus and solidus are high-degree polynomials

is:

i n Q. n 4
1in 1 n, n i=2 i R

=l - R = LA P — T (39
e (p1 pl),p1 q (T 10) )(I Io) o)t (39)

T
B n=2 T, =2 i
1+ (T-T)
0ji=2 Ti

which is again proportional to solidification range 8 T =T - To'

For ideal solutions, the molar concentration for the solvent A atoms is

nx, - b (k-2 - S A A\ oot Sl )
A R T T 2 T 2 T 2 2
A .
RTA 'I‘A RTA A TA
The molar concentration for the solute species is
AH AH n . n
xB=1-xA=- A2 T+ A3 T2+...= z a.Tlor z f.Tl,
RT, RT, n=i ' =1 !

for the liquidus or solidus lines, respectively.

Hence, an exponential function of the melt temperature in the liquidus and solidus
equations can be approximated by appropriate polynomial functions of the melt temperature.
The percentage errors involved in the use of the constant-k equation can, therefore, be

similarly estimated or computed.

2.4.5 The Last Portion of Freezing Melt

Chalmers (1969) discussed the fact that normal freezing of an alloy melt results in
the last material solidifying at concentrations higher, sometimes considerably so, than
that of the original liquid. In 1939, Hayes and Chipman stated without proof that the last

portion to freeze may be a eutectic.

2-32

o —— o

L L Lo )

[ T ]

H‘

[



Sowp L

Ly DEL T e 3R R VS ARSI Y S S Ry e g

¢ e N R T A W [ wr e oled ﬁ*‘«i“\ﬂ EFE

PR

[ TI

B

N

L TR
o

> o atvany
e

-~

e st
o

.

S s carmenny
W o vamet

To understand why the last portion of & melt to solidify under nonequilibrium
conditions always takes place at eutectic temperature Tu (Fig. 1-13) yielding, in-
variably, the eutectic, we can intuitively reason as follows. We consider only the
extreme case of a very dilute melt whose initial solute concentration is c, >~0. During
one step of the freezing process the melt temperature decreases by perhaps ATm =
- AT =10K or 1K, with an always incomplete or fractional loss by solidification, i.e.,

Ap or Ap/(1-p) respectively, of the melt. Simultaneously, both the freezing solid and

remaining melt are solute-enriched according to the solidus and liquidus curves (for
the usual case when k <1, as shown in Fig. 2-2). This stepwise nonequilibrium

freezing process may be repeated many times, but eventually the melt temperature

Tm must come down to Tu' At Tu’ there must still be a finite but perhaps very small

amount of the liquid melt left (since a fraction of a small fraction is still a finite

fraction). This liquid, being at Tu' has the eutectic composition c, = Cpu’

One can also obtain a proof of this conclusion from the normal freezing equations.

Since at Tm = Tu' c, = csu’ the proportion of the normally-frozen eutectic Pu is from

Eq (27), for the constant-k case with linear liquidus and solidus lines.

1

k-1

bl e, (62)

When the liquidus and solidus curves are quadratic functions of the melt temperature

(40)

- 2 _ _ _ 2
Tm' i.e., c’— a (Te Tm) + (Te-Tm) and e = f(Te Tm) t gl (Te Tm) , the appropriate

normal freezing équation gives

o - {l-p} ) Te Tu (a-f) + (b-g) (Te Tu)
u Tm=Tu Te-Ti (a-f) + (b-g) (Te-Ti)

where r and q are constants for a given alloy system, as defined by Li (1067a); and a,
b, f, and g correspond, respectively, to A P b ¢ as, and bs'

Since csu' c, k, Te' Tu' and Ti all have real, positive values, and since a,
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f, b, g, r, and q are all real constants for a given alloy system (witha> f = |b |

=|gl) pu must therefore be real, positive, nonzero, and calculable.

Similar mathematical proofs can be obtained for cases where the liquidus and
solidus curves are cubic and higher-degree functions of the melt temperature (Li, 1968);
are exponential functions of the reciprocal absolute melt temperature, i.e., ideal
solutions (Li, 1971); or are portions of a ternary constitutional diagram of the pseudo-
binary type (Li, 1972).

It shou»lgge emphasized that determining P, from Eq (27), particularly when c,
is small, represents its worst-case usage. As will be pointed out, such a usage is not
only pedagogically incorrect but may yield erroneous and completely misleading results.
Such not uncommon usages (see, e.g., Flemings and Mehrabian, 1971) are, therefore,

to be discouraged.

Mathematical proofs with the aid of the non-constant-k, normal freezing equations
are, therefore, necessary for most cases where the liquidus and solidus lines are

curves rather than straight lines. The intuitive proof given above is particularly desir-

able because it is universally true and applies to all normal freezing conditions, regardless

of the types and shapes of the constitutional diagrams. All these proofs are, however,
based on the assumptions of zero solid diffusion and infinite liquid diffusion. While
solid diffusion is negligible in most freezing studies, as will be more full discussed,

the liquid diffusion in actual freezing processes is never infinite. This condition results
in a solute-enriched layer next to the solid-liquid interface (Tiller et al, 1953). The
higher solute concentration in this layer, rather than the lower concentration in the main
body of melt, now determines the concentration oi the freezing solid. That is, the
effective (variable) segregation coelficient ke is now increased toward unity. However,
ke never reaches unity at finite growth velocity (that is, solute rejection by the freezing
solid into the remaining liquid is unavoidable) and, above all, there is always a final
solidifying portion in which the freezing conditions are nearly normal (Tiller e. al, 1953).

Hence the last solidifying eutectic weight or volume is never completely eliminated.
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The above discussion thus shows that nonequilibrium freezing always results in
the formation of a finite amount of eutectic at the eutectic temperature no matter how

small the initial solute concentration.

2.4.6 Numerical Computation of Normal Freezing

The array of normal freezing equations presented above does not cover all con-
ceivable types of constitutional diagrams. Often, the liquidus and solidus lines are not
simple polynomial functions of the melt temperature. Computations, using closed-forra
equations, of the normal freezing behavior directly from basic thermodynamic constants
are impossible for cases where the liquidus and solidus lines are not simple, logarithmic,
or exponential functions of the melt temperature. For example, Thurmond and Kowalchik
(1960) has shown that, when the heat capacity of the pure supercooled liquid solvent is
constant but that of the pure solid solvent is linearly related to the melt temperature,
the logarithm of the solute concentration in the liquid has three additive terms in addition
to the one previously given for the ideal binary solution case. Here, the normal freezing
differential equation cannot be solved exactly. Reisman (1970) has presented a large
number of complicated equations for the liquidus lines, the normal freezing differential

equation of which cannot be solved exactly and numerical methods must be used.

In most cases, the liquidus and solidus lines can be adequately represented by
polynomial functions of the melt temperature. Yet, determination of the roots of the
polynomial functions for insertion into the closed-form, general normal freezing equation,
Eq (30), must be accomplished numerically if the polynomial functions are of quatic or
higher degrees. Hence, there is a definite need for a reliable numerical methods of

known accuracy that can be applied to any type of constitutional diagram.

A literature search failed to reveal such a numerical method. Gulliver in 1922
and Brody and Flemings in 1966 presented the same numerical method for variable-k,
normal freezing computations. This is a combined graphic and finite-difference
(Butler and Kerr 1962) method that approximates the liquidus and solidus curves by a
series of straight-line segments. Pfann's equation, Eq (25), is repeatedly used, once
for each pair of the segments between two consecutive isotherms. This method is

simple and convenient, but its accuracy is limited by the large (at least § or 10%)
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errors introduced when graphically estimating the local liquidus and solidus slopes

and by the repeated error accumulation or buildup through the many computation steps.
The accuracy, therefore, cannot be high or even satisfactory for critical solidification
work, no matter how small the size of each computation step. Further, the accuracy
has never been compared with closed-form, normal freezing solutions, other refined
numerical methods, or even the same method with reduced computation step sizes.

Note that Gulliver (1922) did disclose a useful method for metallurgists at a time when
numerical methodology was not advanced and when modern computers or even calculators

were not available.

Two numerical computation methods are briefly described below. These are

the Runge-Kutta method aud a finite-difference method.
2.4.6.1 The Runge Kutta Method

The Runge-Kutta method (Kunz, 1957) can be used to numerically integrate the
normal freezing differential equation and to produce the final, computed value of fraction
solidified p at any melt temperature T. This method is stable and self-starting; that
is, only the functional values at the initial, or a single previous, point are required to
obtain subsequent functional values (i.e., p and T). For this reason, we can easily
change the step size h at any step in the computations. This is particularly desirable
when the computed results must be more accurate in some solidificat on ranges than in

others.

The ordinary differential equation for normal freezing, given as Eq (25), can be

written;

dp _(1-p) LYT) _
aT = L(T) - §(1) _ {T+P)

where L'(T) is the temperature derivative of L(i), L'(T) is the temperature derivative
of the fraction solidified p(T), i.e., dp/dT, and f(T,p) is a new function of both T and p.

For the case with quadratic liquidrs and solidus lines, for example, the above

equation becomes:
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dp/dT = (T, p) = ~L=RL(8+20T) (42)

(a-0)T + (b-g)T°

The initial conditions are po =0, T = To’ L(To) = co, and S(To) = cso (Fig. 2-2).
The above normal freezing equation is solved numerically by using a single-step,
fourth-order Runge-Kutta integration process (Kunz, 1957), In this process, the value

of {T,p)at T = Tn is used to compute fn+1(T,p); earlier values fn-l’ fn-2’ etc., are

not used.
The relevant equation is:

fn+1 = fn + (k1+2K2 +2k3+k 4)/6 - (43)

where, for step size h;
kl = h f (Tn’pn)

ky =h f (T +h/2, p_+k /2)

k3 =hf (Tn+h/2, pn+k2/2)

k4 =hf (Tn+h, pn+k3)

2.4.6.2 The Finite-Difference Method

The basic differential equation for normal freezing, Eq (25), is
dp _ _ oy = —2(T)
1-p dln (1-p) L(T) - 5(T) daT

where C' = L(T) and e, = S(T) are function of the modified melt temperature for the
liquidus and solidus, respectively. L'(T) is the first derivative of I(T) with respect to
the modified temperature T and can be found from L(T) = c.

During a short time interval at, T, c,= 1L(T), and e, = S(T) are all fairly con-
stant, and usually both c’ and cs are increasing. Their difference, Q(T) = I(T) - S(T),

can also be consjidered as constant, which is the essence of the finite-difference method.
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Hence,
Tl+1
p 1-p T
i+l i+l LY(T) e i+l
1n (1-p) =1n = - dT = - I(T)
P, l'pi Q(T) Q(T ) Ti
Ti
(T
1 _ i+1
Q(T ) [L(T) L(THI) ]= Zi Q(T) ' {44)
where
KT {
= B 44
%" Q) (44a)
Knowing pi atT = Ti' we can estimate pi+1 at T = Ti+1 (so that AT = Ti+1 - Tu).
as follows:
=1-(1-p)e S b0 (45)
Pin (1-p) exp 2, Q)

Equations (44) and (45) allow us to compute the complete normal freezing hehavior
of an alloy having an initial solute concentration in the melt c,=¢ 10" The starting
point for this computation is the point at which the liquid begins to greeze, i.e.,
po =0, T= To' c1 = c10 = co, c‘ = cso’ and Q(To) = L(To) - S(To). From these known
values of parameters, Zo can be cu.pted by Eq (44a), from which

!

lo -cso)

We can then specify a constant (or variable) value of incremental temperature

Z,= LT )/QT ) =g

AT = Ti a° Ti’ and find the successive values of T. From these T's, we can compute
the values of L(T), S(T), and Q(T) = L(T) - S(T) for substitution and use in Eq (45).

(S
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Note that, in deriving Eq (45), the value of I(T), S(T), and Q(T) = I(T) - S(T)
are assumed constant during the very short time interval At or temperature interval
AT = Tl+1 - Ti' This represents the zero-th order approximation of polynomials L(T)
and S(T). This approximation is selected to integrate the basic normal freezing
equation, Eq (25), for use in the finite-difference method. As will be shown, this

method gives useful results when compared with exact solutions from Eq (28) - (30).

Another way to integrate Eq (25) for use in the finite-difference method is to con-

sider S(T) constant during the very short tiine or temperature interval. We then have

dp __ - RN ¢.) R -
1y S-dn@-p) - ASges dT = din [LT)-S(T)) (46)

The results, computed according tv Eq (46) are, however, no better than those

obtained from Eq (44) - (45); they are therefore omitted from further discussion.

Added accuracy in the computed results may be achieved if we replace Q(Ti)

in Eq (44) and (45) by Q(T ), the average of the two values of Q(T)at T = Ti and

i, i+1
T= Ti+1’ respectively. We therefore have a choice of the following two computation
schemes, which are arranged in the general order of decreasing accuracy in results but
increasing ease in usage:

I. Equations 44 and 45, together with Q(T y and Q(T )

i, i+1 i+1, i+2

II. Equations 44 and 45, together with Q(Tl) and Q(Tiﬂ)’

2.4.7 Computation Example

The following computations illustrate the above procedures. The alloy melt con-
sidered here consists of 10% Sb in Ge, i.e., ¢, = 0.10.

The liquidus and solidus curves, L(T) and S(T) respectively, for the Ge-rich
portion of the Ge-Sb system have been determined and represented by second-order
equations, from which we find:

2-39

t



T = 22.06K
o
: c = G(T ) =0,00280
. -} o]
(1]
co
z = ———— 1.03
o )
0 8
o

Table 2-2 ygives the computed values of the fraction, p, of solidified melt at 17
different melt or interface temperatures, for 10% Sh in Ge. Both computation ichemes
were used, together with a AT of from 10K down to 0.0001K in five decades. The number
of sets of computed results thus varied from 32 (for AT = 10K) to 324,104 (for AT = 0. 001K).

Only a small fraction of these recults are tabulated. Table 2-2 also includes the corres-

NES Lo o el L B

ponding values of p computed with .. closed-form equatior derived for cases where both

.y

the liguidus and solidus curves can be expressed as quadratic equations of 1, Eq (27),

such as those given above for the Ge-Sbh svstem.
In comparing the p values at a particular T, w2 notice that:

R e The two computation schemes gave results closge to the corresponding values
obtained from the closed-form solution. This indicates that the numerical
method is useful, at least for 10% S in Ge

o Scheme 1 gave much better results than scheme II. Thus, the . Jue of
averaging 1(T), S(T), and Q(T) during the computations is substantial,
and averaging procedures should generally be used.

e Decreasing AT generally improved accuracy or decreased deviation from

the closed-form solution values, as would be expected

® For a given scheme with a specified AT, accuracy consistently improved

with the decreasing melt temperature, Tm.

These conclusions are quantitatively disclosed in Table 2-3, which gives the
average and standard deviations from the p's by the closed-form solution, for the

different schemes. This table shows that for 10% Sb in Ge:
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¢ Minimum discrepancy from the closed-form results for each scheme was
reached with a medium AT. Scheme I reached minimum standard deviations
of about 3 x 10° ! with a &T of 0.1K, while scheme II had minimum standard
deviations of about 1 x 10" with a AT of 0. 01K

o Except with a AT of 0. 001K, scheme I generally gave results one to over
two orders of magnitude more accurate than corresponding values obtained

from scheme 11

o The average deviations of the results from p (from Eq (27) computed with
scheme II were consistently positive; that is, this scheme usually over-
estimated p. Scheme I, on the other hand, changed from underestimation

to overestimation as AT decreased from 10K to 0. 001K

e Average deviations were as low as 1.6 x 10-7 for scheme I with AT = 0.1K.
Even with AT = 10K, the same scheme had an average deviation of only

-1.3x10°3,

Knowing the standard deviations and number, n, of results per set, one can
easily compute the maximum probable deviations for any single result. Thus since
scheme I had an average deviation from p of -1.34 x 10-5 and a standard deviation of
6.50 x 10"6 with a AT of 1. 0K and n of 324, 95% of the time one would expect any single
numerically computed result to be accurate within the range -1.34 x 10“5 +2.0x6.50
x10 8 or 4.0x10”" and -2.64 x 10—5; that is, under these conditions the numerically
computed result is almost always underestimated, by from 0.40 to 26.4 ppm in 95

times out of 100.

The above finite-difference procedures are well-adapted to rapid, automatic
machine computations. Further, all these procedures apply for any liquidus or solidus
curves that can be represented by reasonable mathematical functions, F(T) and G(T),
respectively. These functions may be power series of T and include, as special cases,
the simple straight-line (constant k) or quadratic equations shown above. These

functions may also be exponential, logarithmic, or ot.er types. Even several different
functions for the same liquidus or solidus curve, but in different freezing ranges, can

be handled with nearly equal facility and computational speed.
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PART III
NUMERIC.\L PROGRAM

Section 1. INTRODUCTION

To understand solute segregation and defect formation in s.ngle crystal growth
thoroughly, one requires a complete characterization of the (mass) diffusion and
temperature fields in the solid and remaining melt. The zero-graviiy effect on solidi-
fication appears (o be subtle and may be overshadowed by other etfects invariably in
any such growth process, a condition necessitating that such characterization be
accurately defined. Unfortunately, the coupled partial differential equations for the
diffusion and temperature fields are generally not solvable. Although special-case
solutions have been given for some types of physically nonsatisfying two-phase Stefan
problems, we must resort to numerical computations for the genera' case solution.

E xisting numerical methods are always suhject to such unrealistic assumptions as
constancy of interfacial temperature, segregation coefficients, diffusion constants, and

other material thermophysical properties.

A program for the numerical solution of unidirectional solidification (or crystal
growth) from a semi-infinite binary alloy (with nonconstant segregation coefficient) has
therefore been initiated. We numerically determine the interphuse temperature, and
temperatures and concentrations of the mesh points, for the interphase point after each
time interval. The interphase temperatures and the temperatures and concentrations
for the two adjacent mesh points are solved, iteratively, only after convergence has been
obtained. The temperatures and concentrations of the remaining mesh points are deter-
mined by solving two tridiagonal systems of linear equations. The semi~infinite nature of
the problem is handled by admitting as mesh points enough points, so that conditions at
the penultimate (next to last) point have not changed significantly from tiie original oncs,
A scheme with variable time intervals is adopted to achieve convergence within reasonable
computing time.
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We have checked out the program for a binary alloy. The results compare favor-
ably with those of the exact analytic solution, differing mainly in that the interphase

temperature is not constant as assumed by the analytic solution.
Section 2. MATHEMATICAL DEFINITION OF THE SOLIDIFICATION PROBLEM

We consider here a liquid binary alloy directionally solidified into two phases,
liquid and solid. We consider the liquid alloy to be semi-infinite with original (at t = 0)
temperature To and concentraiion CO. Solidification occurs when the temperature at
x = 0 is changed from T0 to a lower value Tl' either instantaneously or gradually,

such that T, is below the temperature T at which the liquid mixture at concentration

1 2
Co can be in equilibrium with a solid phas~. As solidification occurs, the solid phase
grows and its boundary is given by x = y(t), the interface point, and the interface tem-
perature at this point is Ti (t). The partial differential equations describing the solidi-

fication process are:

262Ts 3T a2cs 3¢,

a —° =37 ;Ds 2 = 3 for o < x < y(t) (47)
9x dx

232T:, 3T, aZc ’¢,

a" > = 3t ;DL ) = 3t for y(t)<x<m (48)
dx 8 x ‘

The variables T and C represent the temperature and concentration (of solute
in solvent) and the subscripts ¢ and s denote the liquid and solid phases, respectively.

The quantities As’ A, Ds' and D L are assumed constant. The following conditions

are assumed throughout:

T‘ (x, 0) = To and CL {x, 0) = C0 (49a)
T‘(ﬂ,t)=ToandCz(°°. t)=Co (49b)
3-2
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! % i T, [yen t] = T, [y t] = T, (49c)
BE

| g ‘ c, [y®, t] =1, [T,0)] (49d)

5 g i Cz [y(t), t] = fl [Ti(t)] (49e)
1Y »,g .

i \_i . aTs aTL

g i - Yy ® =k 53 -k, 5= for x=y(b) (49f)

¥ i ”} {fs [Ty®]-f, [Ti(t)]} yn =0, _aTz - Dy 'Sxi for x = y(t (49¢)

=

e

Equation (49a) specifies that the original mixture is all liquid at temperature To and

concentration Co‘ Equation (49b) is a consequence of the semi-infinite nature of the

el
L aiai]

mixture so that, at any time t, the portion near infinity is unchanged. Equation

£
P——

] (49c) assumes that there is an interface temperature T i(t) at the solid-liquid interface
plane and that both the solid and liquid phases at x = y(t) have this temperature; there

is no jump in temperature. Equations (49d) and (49e) state that the concentrations of
solid and liquid at the interface are given by the solidus and liquidus curves, respectively,
of the constitutional diagram for the alloy. Equation (49f) connects the derivative of the

moving boundary with the redistribution of temperature, and Eq (49g) connects the same
boundary with that of the concentration.

The conditions on Ts(o, t) and Cs (o, t) are not fixed in our discussion and a number

of alternatives are considered:

* Ts (o, t) = Tl(t), with Tl(t) equal to a constant for all t,

® Linear, Tl(t) = 'I‘o + t(Tx-To)/s for t<s and Tl(t) = T1 fort>s,

-
-t/s N o =
.soTl(O)-ToandTl( )="T,.

)e 1

¢® Exponential, Tl(t) = T1 + (To - Tl

TEa

3-3 =
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For Cs(o, t) the conditions considered are Cc(o, t) = cl, usually taken CS(T2).

or at times a condition conserving mass between 0 and «,

Our two approaches may be designated as analytic and numerical. The numerical
approach can be applied to all three conditions on temperature, whereas the analytic
approach holds only the case of constant temperature instantaneously applied. A variant
of the analytic method, i.e., applying linearly varying temperature, should be investi-
gated.

Section 3. THE ANALYTIC SOLUTION

A similiarity solution can be written 1n the form

y(t) = 284t (50a)

T, =T, + (T, - T)) erf (x/2aff)/erf [y(t)/zas\ﬁ] (50b)
T, =T+ (T, = T ) erfe (x/2apt)/erfc [v(t)/2a£/'t'] (50¢)
C, =€+ [fs(Ti) - c’l] erf (x/zJFst)/erf [y(t)/ JD, t (50d)
C, =C, + [t'L(Ti) - Co]erfc (x/2JD )/ exfe [y(t)/zﬁzt'] (50e)

The quantities Ti and P are determined from the boundary conditions. It is clear that,

-¢1 - -
if Tl 2T2 = fL (Co)' then there is no solidification, C1 (x, t) = Co' and T1 (x, t) =
TO +(T 1 To) erfc (x/2a L“ﬁ)' The solution given above satisfies boundary conditions
(49a, b, c), and equations (49f) and (49g) are employed to determine 8 and T, as

i
follows (Rubenstein, 1971):

y = BA "7 (5la)
2

AT T2

8 2 4ag t 1

—=(T,-T,) = . 51b

Y (T, T 1) \F'-e W/erf [y(t)/ZaSJ] \51b)
3-4
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2
-X
oT 2
‘L 4a Lt . 1
= (T, -T)" \F e s—p/erfo [y(t)/zadt'J (51c)
2
aC -:D t 1
8 _ - 2 8
== - [fs‘Ti’ o 1] e e Xn Jert [y(t)/2 Dst] (51d)

aC

-a-’-‘i= [f{,(Ti) - Co] . -% e D¢ 2ﬁt_/ert‘c [y(t)/ZM] (51e)

Substituting in Eq (49f) and (49g), eliminating the factor 1 » and replacing x by y(t) and
y(t) by 28JF, we get \F

8 8
2 a2
ag - 1
ks (Ti T )e k& (Ti To) e

Ta ﬁerf (B/a ) aL;F erfc (B/az) (510)

34 2 2
- B8
D D

) L |
t (T)-f,(T] s (A T-Cle T B[l (TP - Gy )e 51
[t ™~ L4™] ® - Trrie G, p o1

By rewriting Eq (51f) solving for 'I’i » We get

2 2 2
8 g _ B8
2 2 2
a, n a, 8
npYBe erfc (a a a erf (a/a ) + T k ae ' erfc (3/8‘)+T0kfsel‘f(8/a
T, = Lz 2 :
B _ B_
R erf (s/al) + koa_erf (B/as) (51h)
' 8
kae
L)

.
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3.1 NUMERICAL METHOD FOR THE ANALYTIC SOLUTION

The successful method for solving the pair of equations (51g) and (51h) involved
starting with an arbitrary (usual small) value for 8. Substituting in Eq (51h) gave a
value for Ti' and using the values for B and Ti in the right-hand side of Eq (51h) and
in the multiplier of B gave a new value for B. This value was checked against the
previous value, and if they agreed to a desired accuracy the solution was accepted.
Otherwise, the two values were averaged and the procedure repeated. Failure of the
procedure to converge after a reasonable number of iterations suggested that a dif-
ferent starting value be tried. Sometimes, iterates which failed to converge suggest a
better starting value: if they diverge immediately try a smaller value, and if they

oscillate try a value close to the point about which they seem to oscillate.

A modification of the analytic method, based upon the assumption that B need not
be constant and that T also varies, has been mcluded in the program. The assumption
is that y(t) —2B(t)ﬂ where B(t) = B + B t+ 92 tees B tj and

= i
Ti(t) = Tio + tTu +.+¢t Tij (52)

This procedure was originally used to determine whether solutions of this more complex
form existed, but was inconclusive because the values of the higher-term coefficients
were sufficiently small to be explained away by computation error, However, this pro-
cedure may be useful in connection with a solution to the more realistic problem where

Tl(t) is variable. This is yet to be investigated.

The method of solution follows lines similar to those given above.

1
B i-5 B
sy O 2 __d
y(t)-rwad?m- +(2§41)8 T (53)
where
, i
. Bd=eo+351. t+  +(2§+1) ej t
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First, assume initial estimates of BO, Bl, cieaey Bj and values of t = 0, At, «.0.uy

j &t. Next, determine values of Ti(t) and B (t) by substituting into (51g) and (51h), taking
care to replace B by B d in those terms obtained from the derivative. Using the values
of B(t), we can find the coefficients by solving a linear system; these coeffic:-.ats can
then be compared with the previous estimates. If they agree, we can find the values of

Ti(t) for the coefficients Tio’ cessy '!‘i . If they do not agree to the required accuracy,

)

the coefficients of B (t) are averaged and the process repeated. To find estimates for the

starting values So, B B., we first solve for j-1 and use the coefficients so obtained

as a first estimate folr is witjh ej set equal to -Bj_l* .001. Thus, we solve a sequence

of problems j =0, 1, ..., up to the desired value of j. The numerical results using this
technique has been good, although its application to the case of constant 'I‘1 has not been
fruitful.

The only boundary condition for Cs(o.t), discussed above, has been Cs(o,t) = Cl’
a constant for all t. A variant condition is one based upon conservation of solute:
y(t) ©

(C-C)dx+j' (C-C)dx=0 (54)
Io § 0 yit) L o

Using the expressions for Cs and Cz in the analytic solution (Eq 50 ¢, d), we have

- y(t)
£(T) < f(T)-C

C,-C )y(t s £ i o
(€1-Coyiv) + erf(y22JDt J_ erf (x/2JDbiax + 72 1

s' erfe (x/2JB_)dx = 0 (55)
y(t)

u 1 -u2
joerfvdV=uerfu+ﬁ- (e -1)

(56)

o

ands erfcvdv =-uerfcu + 1 v

e
u Jr

2

!

'l‘%&& Lo



we obtain the relation

f(T)-C

g
[fs(Ti)-fz(Ti)]y(t)+;%(?i/2—Jﬁ.:T) .@ﬁ'—ﬁ—e LA

f (T )-C - ._Z.(.t.L. 2
+ f‘ ‘/2 °“ 2B ~L. L] - (57)
erfc (y ;p£ ‘ln

By comparing this condition with Eq (49g), we have

1 5T -6
T. - T t) - zt. = . 2 D t 58
[fs( l) f{,( ‘)][Y( ) Y(t)] ,n erf(y/?JD_sT) J ] (58)

For the case where y(t) = ZBJt'. y(t) = 2ty(t) and the condition is fs(Tl) - C1 = 0. This

means that the concentration of the solid solute at x = 0 is the same as the concentration

at the interface, and hence the concentration of the solute in the solid is constant every-
19)

where. This is equivalent to the condition given by Rubinstein (1971): -ax—s =0atx =0,

which implies that C1 = fs(Ti)' However, if (y(t) - 2t§r(t) is not zero, fs(Ti) - C1 can be

computed to determine C, at every time interval.

1
The program for computing temperature and concentrations for the solidification
of a binary alloy system is named BISCL. BISCL employs a subroutine BETTI to deter-
mine the values of f and T T The main program computes, for each instant of time t,
y(t), y(t), Ti’ fs(Ti)’ and fL(Ti) and then, for each (x,t), T (x,t) and c(x,t). The spacing
for x may be equal; j A x for j = 0,1,....Ix-1 given by IAM = 0, or 0,2j-lax forj=1,
..., Ix-1 where A x given by DELX and IAM =1. To compute fs(T‘) and fl(Ti)’ the points
on the solidus and liquidus curve are input as a table of triplets (T, fs, fi)‘ and
Lagrangian interpolation is used to interpolate between tabular points. The number of
interpolating points L is less than or equal to the number of triplets IF. The time inter-
vals are equal, given by DELP, and are terminated when time exceeds TF. The number

of iterations permitted before the program was stopped for further iteration is given by
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NIT. The number of coefficients of 8 (t) = Bo + Bl t+. ... Bj tj is givenby KT =j + 1.
In the ordinary case, KT =1. To determine the first approximation of 8, the quantity
FRX is multiplied by DELX. In the case of a failure to converge, an error indicator is
set in BETTI and tested in the main program permitting a change in FRX. If FRX is set
to zero, the program will stop. As a boundary condition at Cs(O.t) if C1 >0 is input, this
is held constant. If 01 = 0, then it will assume a conservation of solute concentration
and compute C1 in the program as required (see above). a is designated by AS, a ’ by
AL, D_by DS, D by GL, T by TO, T, by T1, C by €O, K_by KXS, k‘by XKL, p by
RHO, and Y by GAMMA. Quantities needed by BETTI and BISCL are transmitted by a

common statement.

3.2 GLOSSARY

The following is a glossary of additional terms used by the program.

SQDS - ,]Fs FAST - erf (YAST)
SQDL - 41_)'; YDST - YT/DST
SQT - 4? FDST - erf (YOST)
BETA - B YALT - YT/ALT
BETH - 8, FALT - erfc (YALT)
TMIN - T, YDLT - YT/DLT
YT - y(t) FDLT - erfc (YDLT)
DYDT - y(t) FLIT - f,(TMIN)
AST - 2 D ]t FST - f_ (TMIN)
ALT - 2 a NT FLTC - FLT-CO

DST - 25t FSTC - FST-C1
DLT - 25, TEMP - T(x,t)

YAST - YT /AST CN - C(x,t)

3-9‘
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Section 4. THE NUMERICAL APPROACH TO SOLIDIFICATION

In order to solve the solidification problem numerically, we devised a technique
for separating the two major aspects of the computation, O-e aspect inv.ives tne deter-
mination of the moving interface boundary, x = y(t), and also the interface temperature,
Ti; the othar aspect concerns the determination of the temperatures, T, and concen-
trations, Cs and C p on both sides of the interface. Although it is clear that the (wo are
intereonnected for computation purposes, we first extrapolated for a new set of tem~
peratures and concentrations at the mesh points, then determined the interface point
and temperature, and finally recomputed the temperature and concentrations based upon
the interface point and temperature. In case of a failure to converge quickly to the inter~
face point and temperature, we interposed new values of the temperatures and concen-
trations at the mesh points to help expe-ite the proces.:x. With this general strategy in

mind, we shall explain in detail the various aspects of the program.
4.1 THE INTERFACE PROCEDURE

At time t, we computed the values of T(x,t) and c(x,t) at the mesh points and the
values of y(t), y(t), and Ti(t)' In addition, we obtained the values of T(x,t + At) and
c(x,t + A t) for all mesh points by extrapolation, and approximated y(t + A t), y(t + A t),
and T,(t + At). We next computed [, (T(t+at)] and £ (t + At)Jfrom a Lagrangian inter-
polation on the solidus and liquidus curves. Recognizing that the interface point and tem-
perature are crucially linked with the values of temperatures and concentrations of the
adjoining mesh points, we recomputed the values of C and T at these points using a
difference form of the partial differential equations.

Based upon the values of the concentrations at the interface and the adjoining mesh

2C oC

points, we computed the partial derivatives g—x— and 3 and determined y(t -- At) from
the boundary condition Eq (49f). Substituting in Eq (49g), we determined a new value for
the interface temperature. When the values of the interface derivative and temperature
agreed sufficiently with the previous estimates, these values were accepted and y(t + At)

is determined from y(t + At) = y(t) + 4 [¥(t) + y(t + At)] At. With y(t + A1), Ti(t +At),

3-10
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and the values of concentrations and temperatures at the adjoining points determined, we
computed t‘s [T‘(t + At)] and t‘1 [Ti(t + At)] and solved for the temperature and concen-
trations at the other mesh points. If y(t + A t) and Ti(t + At) did not agree sufficiently,

i e

o, e A ST

e+ e s e g, O ARG T
L z

we averaged them and the iteration repeated. If conversion was not achieved after a

designated number of iterations, new values for the mesh points are determined. If

]

convergence was not achieved after a similar number of iterations, we halved interval

P At and determined values for T(x, t + Azt—). C(xy t + %), y{t + "‘?t ), Vit + -Azi). and

vk

, T i(t + %t) by interpolation. The process was repeated until convergence was attained
o or the time interval cut down below an acceptable level. In the latter case, the program
either accepts the values attained or is stopped. An additional device which aided in

inaucing convergence was based on a check of montonicity. The temperature must

w L SHRE R Y. T IR ANGE e SASIE R IrR

monotonically increase from x = 0 to X = », as must the interface temperature. Thus,
- ‘ if values that violated this monotonicity appeared, they were replaced by those found bz
linear iaterpolation. Similarly, thz concentrations in the liquid will decrease from

X =y(t) to x ==, A monotonic behavior, either nonincreasing or nondecreasing in the

solid phase depenuing upon the condition upon (.‘s(o.t), can also be expected.

The values of the concentrations and temperatures for the mesh points adjoininyg
o the interface point were also determined using this iteration process. Although con-
i vergence checks were not made on concentration and temperature values it is clear that,
' o i since these values ultiinately involved in the expressions for computing the interface
derivative and temperature, their failure to converge would have prevented the con-

; vergence of the derivative and interface temperature.

P 4.2 NUMERICAL APPROXIMATIONS

In order to determine the values of y/t + At) and Tt + At) from the boundary
- conditions at the interface, one must have a raeans for approximating partial derivatives

bk o8

ct of the form g—: » where u is a function of x and t. In addition, computation of the con-
‘ ‘ centrations and temperatures at the adjoining mesh points require approximations for

i 2

' expreasions of the form Q.:.'. and é—g- . We have already indicated that y(t + 4t) is found

3 nxX

-
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from y(t + At) =y(t) + 3 y(t) + y(t + &t) At, sometimes called the modified Euler
eguation. Although this is a lower-order method than the usual Runge-Kutta employed

by other researchers in similar situations, it is preferable here because y(t) is computed
by an elaborate iterative scheme. Runge-Kutta involves the use of intermediate values
of y(t), which would have to be computed in the same complicated manner. Only when

explicit expressions are available for y(t) can Runge-Kkutta be recommended.

The expressions for the partial derivatives are base upon difference expressions,
assuming unequal spacing, because the presence of a varvug interface point requires
approximations involving the values at this point. Although economies in computing are
available if the subdivisions of the mesh are equispaced, they must be sacrificed because
of the varying interface point. To require that the interface points be at mesh points
would necessitate a variable time step and a very small space interval in order that
convergence on y and Ti be reached after reasonable number of iterations. In addition,
the semi-infinite character of the problem, with little change in variables away from the
origin, suggests that the space intervals increase in size. To accommodate such a
situation, the key expression for the partial derivative (-:%) atx = x; is given by

u(x, + ax, t) - u(x1 - 4x,t)

A » i.e., by a second order approximation. Thus,
X.» t) - ux
u( 2' ) u( 1! t) . . . au Xl + X ) )
is an approximation for — atx = Similarly, the
Xy - X ox 2

expressions for -a—; based upon the values of u(xl, t), u(x2. t), and u(xa. t) is given by
ox

u(x3. t) - U(XZ, t) U(x2t) - U(xl. t
X, - X - X - X * (xg -xl)/2
3 2 2 1

As a consequence, if the partial SL: at x = Xy is required for given values at x_, x_,

1" 72

y t) - =

u = “(x2 ) u(xl’ 0 + xl xz ﬁ is used, where
3% X ! X, - X 2 2 !

1

and x,_, the formula
3
2 1 X
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> is computed as ahove and gives second-order accurate results. An arithmetic
3x
function statement of the form D2(X, F,Y,G, Z,H) = ((H-G)/(2-Y)-(G-F)/(Y-X))/(Z-X)/2)

J u
i . . -
8 used to compute 5 using the six quantities xl, u(xl. t), xz, u(xz, t), x, and

ax 3
u(xa. t).
- . 3u du . .
We use a similar approach to interpret at " 3t is approximated by
u(s.t+%t% - x4 » €valuated att + %l . Thus, the equation %:5 = q° ; is approx-
3x
mated by '
2 2
u(x, t+4t) - u(x, t) 3 u 3 u
u = lq e
At 3x 2 2
t X/ piat

2
. A
Here g—-—zl- att + ‘Et has been replaced by the average of the values at t and t + 4t. This
Ax
2
is called the Crank-Nichoison method (Ref. 81). Since the evaluation of 2

ax
involves the values of u(x, t + 4t) at three values of x, this equation has three unknowns.

att + At

However, as an iterative method, one can assume the values needed for 9 u

3x
and use the equation to find an improved value for u(x,t = At}, In this way the valuces of

are known

the concentrations and temperatures at the interface-adjoining mesh points are determined.
This is a reasonable approach since many iterations may be required to compute
y(t + At) and Ti(t + 4t).

Evaluation of j'r(t + j t) 18 obtained from

. 3C aC

- _< —S). _
y =\D, 5~ -D, ) '[fs‘Ti’ fL(Ti)]

The partials are evaluated from the formula for ‘2"—3 . To find an iterate of Ti(t + 48t) in

3-13
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the equation py y(t +41t) = K. 3% - K 3% with partials att + 4t, we replace
aTs by Ti_Ts . fj-y(t+At) a2,r  and BT{. by Tj-l-Ti
- ' - vt
ox y(t +At) xj 2 sz X xj_1 y(t + At)

+

y(t + ot) - xj -1 azT 2
» Where the subscripts j and j-1 indicate the mesh

2
AX
A §-1
point after and hafare the {ntcrface puint, respectively. We can solve for Ti’ excepting
azT a?"r
the Ti terms involved in s and 3 . This gives an iterative formula for
3x /. dX

i i-
’l‘i (t + 4t). We see that the values of concentrations and temperatures at the j and j-1

points play an important role in determining y(t + 4t) and Ti(t + At), and their convergence

presumes the convergence of the four other values.
4.3 THE SOLUTION FOR REMAINING MESH POINTS

When the values of interface derivative and temperature converged, we determined
the interface point and concentrations of liquid and solid at the interface. The valies for
the concentrations and temperatures must then be computed for the remaining mesh points.
To determine these values, four systems of equations, one each for concentrations and
temperatures for each side of the interface point, must be solved. Since the values on the
infinite side of the interface point change gradually, one need not consider too many mesh
points. By starting with a small number of points, chosen so that the last few show no
change from the initial values of Co and To' the number of points is increased whenever
the values at the pentultimate point shows some nontrivial changc., The new points again
have values Co and To. The values Cs(o,t) and Ts(o,t) are determined from the initial
conditions so that they, too, re already known. The values of Cs(x

j-1
where j-1 indicates the mesh point before the interface point, and the values of C L(x

»t) and Ts(xj_l,t),

t)
jl
and T L(xj, t), where j indicates the mesh point after the interface, are also known from

the iterative process. 'At each of the interior points, the Crank-Nicholson equation

involves the values at three mesh points: before, at, and after the point for which the
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equation is given. Fach system of equations is not only linear (since the coefficient of
2

é—‘; is assumed constant), but aiso tridiagonal. A subroutine (TRIST) is used to set up

3x

the coefficients of each of the systems and calls upon a standard Grumman subroutine

(TRIDI) to solve them.

The same procedure is used when convergence has not been achieved and an

updated set Jdf values for concentrations and temperatures are desired for continuing the

. . . A . .

iterations. This need results because the expressions for 5 at j-1 or j depend not
X

uly on the peints subscripled Ly j=1 and j but also on those whose subscripts are j-2

and j+1.
4.4 STARTING PROCEDURES

The previous discussion assumes that y(t), y(t), T(t), anG ail vaiues of C(x,t)
and T(x,t) at the mesh points are known, and that first approximations are available
for time t+At. However, all we know at time t = 0 is that y(0) = 0, but we have no
knowledge of y(0) and Ti(O). Indeed, it inay even be ture that no solidification begins at
time t = 0, because the temperature at x = 0 may be above thc temperature T2 at which
solidification can begin for the given initial concentration Co' In the latter case, until
the surface temperature reaches T2 the problem is that of pure heat conduction, and for
each time interval one solves a single tridiagonal system. After each interval, we
ascertain whether the temperature at the pentultimate point has changed nontrivally so

inat points should be added tv the mesh.

However, when the temperature at the surface is below T2 solidification occurs
and, hence, a need arises for a starting procedure to determine y(t) and Ti(t). An
appreciation of the problems involved can be gained from the analytic solution for the
case of constant surface temperature. In this case, as was discussed earlier, y=28 Vi,
y= \/-—%—. and t' interface temperature is constant at Ti' Then 3"(0) is infinite and, hence,
no value that will give useful results can be assigned to y(0). One way to begin the
numerical problem is to assume that the analytic solution holds at least for the first time
interval. This would only be useful for the casc of constant surface temperature. In

addition, the purpose of the analytic solution, i.e., to check the accuracy of the numerical
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solution, would lose some of its validity. As an alternative, w: may use sume aspects
of the analytic solution to asgist in starting thc solution. One such aspect is that

. . . . dy . .
y(t) = 2y(t) . t. This enables us to estimate y(t) if an approximation of a-tx is given.
However, having no value to Ti and y at t = 4t to begin with, we¢ have no means of
dy
dt
astimate of 4y, determine ’I‘i by assuming a linear law for temperature from x = 0 to

ac dC

. . - Ly _ dy _ N -
x = 28x, and determine At from st C dt (K Y KL =) '[fs(Ti) fL(Ti)]

computing using boundary equation (49f). As a variant, we may begin with an initial

{

From this At, one finds another which is of the form DELT/2" and less than previois

at, where DELT is an input to the program. A corresponding value for y(4t), T(aAx, At)
is estimated linearly. From then on, the iteratives continue in the usual manner, except
that y is computed as 2).' At. Convergence occurs, or else 4t is cut back. The next
time step no longer requires a special starting procedure. It is useful to choose the
original Ay somewhere between 1 and } of the length of the first space interval 4 X.

This removes y far enough from the mesh points to make the differences meaningful.
4.5 PROBLEMS CAUSED BY INTERFACE APPROACHING MESH POINT

One of the greaiest obstacles in the development of the program occurred when
the interface point approached a mesh point. The time interval was halved, down to the
limit, until it failed to converge for the smallest interval allowable. Relaxing the

minimum time interval resulted in the use of an inordinate amm

l-

nor did it always succeed in breaking through this mesh point barrier. In addition, dis-
continuities in interface derivauve and interface lemperature appeared after the mesh
point was passed. There was a tendency to correct itself, however. Hence the dis-
continuity due to the definition of the partial derivatives with respect to different points

was an unavoidable but self-disappearing evil.

The first solution to the mesh point approach problem was the development of an
extrapolation procedure whenever the interface point neared the mesh point. For
example, when the interface traversed 9/10 of the mesh width, the results of the last
two points were extrapolated linearly to the mesh point. This carried the program

through the difficulty with only a small error due to linear extrapolation.
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Another solution to the approach problem was to change those points adjoining
the interface point. Whenever the interface point came within an input fraction (1-85)
of the mesh width, the adjoining point on the infinite side was shifted to the next point for
all iteration considerations and the values of concentration and temperature at the skipped
point were determined by a linear interpolation from the interface point to the assumed
adjoining point. On the other hand, the adjoining point on the zero-side of the interfuce
was not shifted until the interface point had passed a distance a ratio S of the mesh width.
For example, if S = .15 and the interface point was .85 A x, the adjoining point on the
infinite side was shifted; and when it was 1.15 4 x. the adioining noint an the zore cide
was shifted. With this strategy, extrapolation was replaced by linear interpolation for
the skipped point. Of course, a change in reference points made for discontinuities in
derivative and interface temperature, but they seemed less severe and were quickly

corrected as the interface moved away from the critical region around the mesh point.

4.6 TIME INTERVAL CONTROL

As indicated in the program, the time interval is subject to variation. The program
allows for large time intervals when convergence occurs quickly, and smaller intervals
when convergence is slow. The two factors are the initial DELT and the number of
iterations NIT. DELT represents the largest allowable time interval, and DELT/128 is
the smallest. If the number of iterations to convergence is less than or equal to
NIT/4 then, for the next time interval, a tiine step twice as large is permitted. If,
on the other hand, after NIT/2 iterations no convergence has been achieved, then the
time interval for the current step is halved, if allowable, and maintained for the next
step. If after NIT iterations no convergence has occurred, then the step size is halved
again, if allowable, and iteration count restored to NIT/2 + 1. If it is not allowable, the
program may stop or accept nonconvergent results as set by input. Another situation
leading to step halving is the occurrance of a negative g*:: . Since this is not physically
realizable, it is assumed that the time step being used is too large, and a smaller on=

substituted for accurate results.

Another option that may affect timec interval control is the desire to print results

at fixed intervals. Thus, if results are required at an instant of time of t + 4t exceeds
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that time, then At is adjusted so that t + &1 will be exactly as required. Also, for the
programs where the surface temperature is variable and no solidificaliun takes place
until temperature T2 is reached, then the solidification time is used by the program for
computation. If this is not the desired time for printout, the user will not be aware of

there vesults.

Section 5. COMPUTER PROGRAMS FOR NUMERICAL SOLUTIONS

Four main programs have been developed in accordance with the ideas described
above. Two programs solve thc consiant surface temperature problem, one (B INCR 3)
using extrapolation to the mesh point and the other (B INCR 2) using the shifting of
adjoining point method. The other two programs both use the shiftirig of adjoining points
to solve for the linear surface temperature (B INCR) and the experimental surface tem-
perature (B INCR 4). These four main pro‘grams use the same subroutines: MOTON to
preserve monotomicity, and TRIST to set up and solve tridiagonal systems. In all four
programs, the solidus and liquidus curves are input in the table manner as discussed in

BISCL. Also, the mesh points are set up in the same way as in BISCL.

The results in Tables 3-1 through 3-3 were obtained using BISCL for the analytic
solution of the solidification of 12% Sn in Ni, with an instantaneous change of surface tem-
perature from 1800°K to 1400°K at time t = 0. The Ni-Sn phase diagram is from Hansen
(1958), while material property data was from Smithells (1968). The coefficient of
B(t) = Bo + Bit + azt 2 + 53t3 and Ti(t) = Tio + ’I‘ut + Tizt2 + Ti3t3 are given. The values
of interface point, interface derivative, and interface temperature are given for times
t =.03125 sec to 1 scc, at intervals of . 03125 sec. The values of T(x,t) and C(x,t) are

given for t = . 03126 sec, .0625 sec, and 1 sec.
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TABLE 3-1 COMPUTED SOLIDIFICATION OF 12% Sn IN Ni,
ACCORDING TO THE ANALYTIC SOLUTION (Sheet 1 of 2)

BO

B

P2

B3

io

0.540109E-01

-0.888091E-04

Til

0.897718E-04

Ti2

-0.425002E-~04

Ti3

0.157333E-04

-0.168538E-00

0.134766E-00

-0.559896E-01

X

T

C

TIME-t y(t) y(t) T (t)
0.312500E-01 0.190948E-01 0.305487E -00 0.157332E-04

TIME-t

0.0

0.100000E-01
0.200000E-01
0.400000E-01
0.800000E-01
0.160000E 00
0.320000E 00
0.640000E 00
0.128000E 01
0.256000E 01
0.512000E 01

0.102400E 02
0.204800E 02
0.409600E

0.140000E 04
0.149360E 04
0.157956E 04
0.169378E 04
0.178779E 04
0.179999E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04

y(t)

0.333330E-01
0.598702E~-M
0.195808E 00
0.139609E 00
0.120246E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00

0.6250000E-01

0.270028E-01 I 0.215984E 00 0,157332E 04
X T C

0.0
0.100000E-01
0.200000E-01

0.400000E-01
0.800000E-01
0.160000E 00
0.320000E 00
0.640000E 00
0.128000E 01
0.256000E 01
0.512000E 01
0,102400F 02
0.204800E 02
0.409600E 02

0.140000E 04

0.146657E 04
0.153083E 04

0.163269E 04
0.175121E 04
0.179905E 04
0.18000)E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04
0.180000E 04

0.180000E 04

0.333330E-01

0.597497E-01
0.598738E-01

0.166143E 00
0.124121E 00
0.120001E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
0.120000E 00
¢.12000GE 00
0.120000E 00
0.120000E 00
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~ TABLE 3-1 COMPUTED SOLIDIFICATION OF 12% Sn IN Ni, ACCORDING TO THE
q ANALY'F_CA_L_SQLPLWMML@M of 2)
B TIME-t | yit) Fit) T ()
P 0.937500E-01 0.330701E-01 0.176329E 00 0.157331E 04
o 0.125000E 00 0.381845E-01 0.152690E 00 0.157331E 04
§ i 0.156250E 00 0.426900E-01 0.136557E 00 0.157330E 04
§ 0.187500E 00 0.467628E-01 0.124649E 00 0.157330E 04
% B 0.218750E 00 0.505080E-01 0.115395E 00 0.157329E 04
x ; 0. 250000E 00 0.539936E-01 0.107935E 00 0.157329E 04
2. 0.281250E 00 0.572672E-01 0.101757E 00 0.157329E 04
i | 0. 312500E 00 0.603633E-01 0.965308E-01 0.157328E 04
2 0. 343750E 00 0.633079E-01 0.920349E-01 0.157328E 04
: 0. 375000E 06 0.661214E-01 0.881137E-01 0.157328E 04
£ 0. 406250E 00 3.658198E-01 V. 8460431 -Ul 0.157328E 04
¥ 0.437500E 00 0.714163E-01 0.815727E-01 . 0.157327E 04
3 , 0.468750E 00 0.739214E-01 0. 788048 E-01 0.157327E 04
oo 0,500000E 00 0.763443E-01 0. 763006 E-01 0.157327E 04
f 0.531250E 00 0. 786926 E-01 0.740207E-01 0.157327E 04
. ¢ 0.562500E 00 0.809726E-01 0.719334E-01 0.157326E 04
f f 0.593750E 00 0.831901E-01 0. 700130E-01 0.157326E 04
: 0. 625000E 00 0.853499E-01 0.682382E-01 0.157326E 04
k ! 0. 656250E 00 0.874563E-01 0.665914E-01 0.157326E 04
! 0.687500E 00 0.895131E-01 0.650579E-01 0.157325E 04
: 0.718750E 00 0.915235E-01 0.636250E-01 0.157325E 04
E 0. 750000E 00 0.934905E-01 0.622823E-01 0.157325E 04
; 0. 781250E 00 0.954170E-01 0. 613203E-01 0.157325E 04
0.812500E 00 0.973051E-01 0.598312E-01 0.157325E 04
0.843750E 00 0.991571E-01 0.587082E-01 0.157325E 04
0.875000E 00 0.100975E 00 0.576451 E-01 0.157324E 04
0.906250E 00 0.102760E 00 0.566368 E-01 0.157324E 04
' 0.937500E 00 0.104515E 00 0.556 785E-01 0.157324E 04
0.968750E 00 0.106241E 00 0.547660E-01 0.157324E 04
0.100000E 01 0.107939E 00 0. 538958 E-01 0.157324E 04
X T C
0.0 0.140000E 04 0. 333330E-01
,4 0.100000E-01 0.141674E 04 0.471641E-01
0. 200000E-01 0.143344E 04 0.557259E-01
0.400000E-01 0.146658E 04 0.597815E~01
0.800000E-01 0.153085E 04 0.599058E-01
0.150000E 00 0.163269E 04 0.166167E 00
0.320000E 00 0.175121E 04 0.124234E 00
0.640000E 00 0.179905E 04 0.120001E 00
0.128000E 01 0.180000E 04 0.120000E 00
0.256000E 01 0.180000E 04 0.120000E 00
; 0.512000E 01 0.180000E 04 0.120000E 00
! 0.102400E 02 0.180000E 04 0.120000E 0°
0.204800E 02 0.180000E 04 0.120000E 00
0.409600E 02 0.180000E 04 0.120000E 00
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These results in Table 3-2 and Table 3-3 are {5 Le compared with those obtained
by the numerical solution, B INCR 3, described above. The times are from .0625 sec

to 1 sec in intervals of . 0625 sec. The values of T(x,t) and C(x,t) are given at

t =.00097653 sec, . 0625 sec and 1 sec.

TABLE 3-2 COMPUTED SOLIDIFICATION OF 12% SnIN Ni,
ACCORDING TO THE NUMERICAL PROGRAM

TIME, t

y(t)

y(t)

T.(t)

0.976563E-03

X 0.00
T 0.140000E 04
C 0.333333E-01

0.100000E-01
0.176418E M4
0.128821E 00

~ TIME, t

0.625000E-01

0.262523E-02

0.272345E-01

0.200000E-01
0.179763E 04
0.120274E 0C

X 0.0
T 0.140000E 04
C 0.333333E-01

TIME , t

0.100000E-01
0.146771E 04
0.553996E-01

0.200000E-01
0.153287E 04
(.578464E-01

0.134412E 01

0.233351E 00

0.400000E-01
0.179996E 04
0.120002E 00

0.400000E-01
0.163831E 04

0.153064L 04

0.157701E 04

0.160132E 00

y(t)

0.800000E-01
0.180000E 04
0.120000E 00

0.800000E-01
0.176099E 04
0.124030E 00

0.127307E 00
0.187500E 00
0.250000E 00
0.312500E 00
0.375000E 00
0.437500E 00
0.500000E 00
0.562500E 00
0.625000E 00
0.687500E 00
0.812500E 00
0.875000E 00
0.937500E 00
0.100000E 01

0.0
0.140000E 04
0.333333E-01

0.160000E 00
0.163849E 04
0.158612E 00

G XEO A

0.400000E-01
0.476896E~01
0.552284E-01
0.623012E-01
0.687872E-01
0.746791E-01
0.800672E~01
0.841858E-01
0.881141E-01
0.919827E-01
0.996864E-01
0.103489E 00
0.107246E 00
0.110950E 00

y(t) T (t)
0.163057E 00 0.157687E 04
0.123216E 00 0.158008E 04
0.117407E 00 0.157892E 04
0.108731E 00 0.157872E 04
0. 989489E-01 0.157869E 04
0,899257E-01 0.157852E 04
0.690561E~01 0.157848E 04
0.636305E-01 0.158206E 04
0.614704E-01 0.158280E 04
0.619815E-01 0.158148E 04
0.611697E-01 0.158031E 04
0.605048E-01 0.157999E 04
0.597120E-01 0.157973E 04
0.588031E-01 0.157957E 04

0.100000E-01
0.1i1392E 04
0.461461E-01

0.320000E 00
0.176112E 04
0.123817E 00

0.200000E-01
0.143380E 04
0.541801E-01

0.640000E 00
0.179812E 04
0.120118E 00

0.400000E-01
0.146732E 04
0.572740E-01

0.128000E 01
0.179999E 04
0.120000E 00

0.300000E-01
0.153247E 04
0.573063E~-01

0.256000E o1
0.180000E 04
0.120000E 00
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s TABLE 3-3 COMPUTED SOLIDIFICATION OF 12% Sn IN Ni, COMPARISON BETWEEN
E { ANALYTIC SOLUTION AND NUMERICAL PROGRAM
g : Time, Intevface Velocity of Interface
_3 { t, sec Position Solidification Temperature
’ i AT.(t)
i By () Lxy 83t L | st |
. T
g : a a i(t)
£
£ -3 -3
g { 0.25 1.24 x10 2.30% 9.47x 10 . R, 787 5.63 0.56%
i 0.50 3.73x10°° | 4.88% | -7.24x107 -9.51% | 5.21 | 0.33%
T 1 - -
A 0.75 2.36x107° | 2.55% | -6.20x10™" | -1.00%| 7.60 | o0.48%
o 1.00 s.00x107 [ 2.78% | s.o1x107 9.31% | 6.33 ] 0.409
X, ‘3 ‘3
- Average| 2.58 x10 3.12% 0.26 x 10 1.90% 6.19 0. 39%
i The average accuracy of the numerically computed results in this example
{ (12% Sn in Ni) is only 3.12% off tha analytic values on the interfacial position y(t);
. Y 0 * ; . -
2 only 1. 90% on the velocity of soliditication y(t); and only 0.39% on the interfacial tem
¢ ]
' ; perature Ti(t)'
f Within the range of study, our numerical program is therefore considered to be
A
i adequate for some applicaticns to the solidification problem.
i
ot
1
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PART IV
SUGGESTIONS FOR FUTURE WORK

Section 1. IMPROVEMENT OF MODEL OF SOLIDIFICATION

The present analytic model assumes all the material parameters to be constant.

Such parameters include:

¢ Specific heats

® Conductivities

e Latent heat of fusion
® Diffusivities

¢ Densities.

In any real situation, these parameters are varying either as a function of concentration,

or temperature, or both, By refining the program to account for such variations, we
move toward a more accurate model. Even more significant, however, is the fact that
we will have a tool for accurately weighing the role and significance of each of the para-

meters in the solidification process, both in one gravity and in zero gravity.

The second improvement in the model involves introduction of the evaporation
effects which were so significant in work conducted during the first part of the contract.
We have already briefly discussed evaporation and the role it plays in solidification.
Only by accounting for this effect can we clearly define the initial conditions of the melt
before solidification in order to ascertain zexro gravity effects during solidiftcation.

Finally, with the help of several fluids specialists in the Research Department at
Grumman, we have begun to analyze the role of liquid metal fluid dynamics on solidifi-
cation, Even in zero gravity, there is considerable fluid motion brought about by forces
such as surface tension, field effects, etc., possibly resulting, u;ain, from evaporative

segregation. We want to account for, in some fashion, the effects of such fluid motion
on solidification.

4-1
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Section 2. EXPERIMENTAL CORRE LATION

Analytical programs are a valuable part of the investigation and, for this reason,
we want to use the programs at all stages of their development to aid in understanding
solidification and segregation in zero gravity. Effects of initial and of boundary condi-

tions, concentration range, etc., will also be systematically determined.

In addition, we want to correlate the program with a very real semi-conductor
material. Certain III-V semiconductor compounds, such a8 GaAs and GaP, form ideal
candidates for single crystal growth in space because of their techgical importance,
stringent demand for perfection, and high cost. GaAs, for example, 18 a high-mobility,
temperature-stable material that has been widely used in lasers, light emitters, Gunn
microwave oscillators, and the HWke., While these devices are already perforniing
numerous unique and important {unctions, their lives, performances, and reliabilities
are usually material-limited. That is, the GaAs starting materials invariably contain
too many physical and chemical defects in the form of point, line, surface, massive,
or spiral types. The o1igin and formative conditions of these defects have not been
fully explained. A clear understanding of these defects is, therefore, an urgent require-

ment for material improvement.

Today, in manufacture, exact control of 8 compound's stoichiometric composition
is required, but it may have a phase diagram which is distinctly nonlinear. In addition,
elemental As and P are so evaporative relative to Ga as to make the required composi-
tional control extremely difficult and nonreproducible. Yet, most conventional studies

consider neither the differential evaporative behavior of the constituents nor the curva-

tures of the relevent phase boundaries. For this reason, we have placed major emphasis

precisely on these two important areas.

GaAs is, therefore, an ideal candidate material; it is susceptible to in--:» vement
through use of analytical techniques. Our programs can begin to explain the formation

of defects in such a material and, therefore, be used to ascertain the effectiveness of
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the space environment in improving the material. Finally, the same programs will

ey
1
.ot

allow us to devise improved GaAr ~pace growth procedures.

Continuing a relationship woich +'as initiated on the current contract, Grumman

will work in cooperation with ::s State University of New York at Stony Brook in an

Bt Bk v
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tr e kg e WA TR S Q#,‘lb.k ¢

effort to correlate our analytical efforts with experimental results. Single cryrtals
will be grown at SUNY-SB under highiy controlled conditions and carefully prepared
statistical plans. These materials will then be analyzed and results ueed to confirm
findings obtained on the computer.
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PART VI

APPENDICES

These Appendices contain all of the papers pertaining to this contract that
were either published or submitted for publication during the contrart per: d. Twe
papers were presented at the American Association for Crystal Growth Second
Symposium in Princeton, New Jersey, in July 1972,
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ABSTRACT

The phenomenon of evaporative segregation in binary allowvs has
been investigated through a study of some experimental evaporation
data relating to the Ni-Cr and Ni-Fe systems. In normal evap-
oration it is assumed that a) the evaporating alloy is always
homogeneous, b) the vapor is instantly removed, and c¢) the alloy
follows Raoult's law. The solutions of the evaporation equations
for the two most important cases are prccsented and experimental
data are analyzed with these equations. The difference between ob-
served and calculated values of evaporation constants lies within
one order of magnitude. This is surprising because of the major
assumptions stated above. Experimental results have shown that
the evaporation time t and final solute concentration m are
logarithmically related, further supporting our evaporation equa-
tions. It is further shown that neglecting the nonlogarithmic
term in these evaporation equations may introduce considerable
errors in the analysis.
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DISCUSSION

The phenomenon of evaporative segregation in binary alloys has
been quantitatively treated by Li (Refs. 1,2). By evaporative
segregation, we mean solute enrichment or depletion in the evapo-
rating alloy as a result of surface evaporation.

The formalism of evaporative segregation in alloys works
surprisingly well for the several systems so far studied,
notwithstanding the several major assumptions involved. In the
present memorandum, we shall study only some experimental evapora-
tion data relating to che Ni-Cr and Ni-Fe systems, as reported
by N. D. Obradovic et al.(Ref. 3). Specifically, we shall compute
the degree and ratc of solute enrichment or depletion in the evapo-

rating source at different temperatures and evaporation times.

In the treatment of the simple "normal" evaporation, it is
assumed that a) the evaporating alloy is always homogeneous,
b) the vapor is instantly removed, and c¢) the alloy follows Raoult's
law. Such conditions exist or are nearly approached in an induction
melt in vacuum or liquid in space. The solutions of the relevant

differential equation for the following two important cases are
(Ref. 2):

Case I: The solute is much more evaporative than solvent,

i.e., U > V. Then the time to reach a final concentration m
is

f (1 - mQZT m - TQ,_
©1 " Gliln m (1 - m) t - m) (1 - m (1)
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where

G1 - - No(l - mo)/AU (sec)

U = evaporation rate of the solute in mol/cmZ/sec
V = evaporation rate of the solvent in mol/cmzlsec
m_ = initial molar fraction of solute

m = final molar fraction of solute after time
ty (in sec)

N = total initial number of moles of both solvent
and solute

A = evaporating area in cm2

For nearly equal m and m_ (i.e., m~ mo), or for small
m and m (L.e., m~ m, x 0), Eq. (1) reduces to the following
logarithmic expression:

(1a)

Case II: The solvent is much more evaporative than solute,
i.e., V> U, then,

1 -"m)m m=-m|
9’

where G, = mONo/AV. Again, for nearly equal m and m (i.e.,
m A~ mo), Eq. (2) reduces to a logarithmic expression very similar
to (la):

(1 ~m)m

t; = Gy In m (L - m

(2a)
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G's are the time constants of evaporation. For the case
when U >> V, solute depletion takes place, i.e., m < LR and,
therefore, the logarithmic term in the parentheses is negative
(the second term in the parentheses is often negligiblc by compari-
son with the logarithmic term). Since the evaporation time, ¢,

must be positive, GL is negative, G2 is always positive.

The evapnration rate in mol/cmzlsec for solute and solvent
is given by (Ref. 4)
A -B /T

v=k(10% V) S/ MT ’ (3)

A -B /T
vek¥ V) /HT (4)
where

K = 5.833 x 10-5, a constant for metals

= molecular weights of solute and soivent,
respectively

T = evaporating temperature in °K
A ,B = evaporating constants for the solute

A _,B_ = evaporating constants for the solvent.

Obradovic et al. (Ref. 3) give the final solute concentrations
for Ni-Fe and Ni-Cr alloys after various evaporating times at
1600°C under various ambient pressures, as shown in Tables 1 and 2.
These data have been analyzed by means of Eqs. (1) and (2), above.
The solute and solvent evaporating constants, A , Bu, Av, and Bv,

u
are obtained from Ref. 4.
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Relevant data for computation of the G's are given below:
a) 607 Fe-407 Ni alloy:

Uy, = 6.386 x 10°% mol/cm?/se; N = 0.7478 mol; T = 1600°C;

Vo, = 1.081 x 10-5 mol/cmzlsec; A= 10.0 cmz; Case LI: U << V.

Fe
b) 80% Ni-20% Cr alloy:

Ug, = 3.479 x 102 mol/cm?/sec; N = 0.7582 mol; T = 1600°C;

vNi = 6.386 x 10-6 mol/cmzlsec; A=10.0 cm2; Case I: U > V.

It can be seen from Table 1 that for the Fe-Ni alloy, the values
of Gz's are constant within one order of magnitude. The difference
between observed and calculated values of G, is also within one
order of magnitude. This is very surprising considering the fact
that elemental evaporation rates generally differ by many orders of
magnitude. Also, the abowve analysis is based on the assumptions of
a) the evaporating alloy is always homogeneous; b) ideal solution
havior (and the solutions here are highly concentrated!); c) the
vapor is instantly removed. The experimental data of Obradovic et al.
(Ref. 3) on the Fe-Ni system shows no systematic dependence of
evaporation kinetics on pressure as one would expect, and suggests

large experimental errors, errors in measurements, or both.

Table 2 also shows the calculated and observed values of Gl's
for the Ni-Cr alloy. Here, also, the values of Gl's are almost
constant, and the differences between the observed and calculated
values of Gy's are smalli. ‘The data on the Ni-Cr system show
some positive correlation between ambient pressure and the weight

percent of chromium in the melt after 30 minutes.
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The values of computed G's are constant within one order of

magnitude. In particular, for the Fe-Ni system, at ambient pres-

sures of 1, 30, 50, 200 (x 103) torr, these same values are ac-

W
# votpmg

curate to within 25 percent. Therefore, in some cases it is de-

sirable to know these values to within 20 percent of their real

Primm g
[ om,j

values.

P In Tables 1 and 2 the time constants G's have been calculated
in two ways. First, G's were calculated by using only the loga-
v rithmic term. Next, the complete equation (1) or (2) involving

both the logarithmic and nonlogarithmic terms was used. It is in-

— iy >y
aa Cee s

teresting to note that the ratio of G's calculated in two cases
3 is constant and has an average value of 1.67 - 0.01 for Fe-Ni
5 alloy and 1.26 ¢ 0.005 for the Ni-Cr alloy. Mathematically,
: this means that for the case U >> V (in Ni-Cr alloy)

p——
-

nraraent
s

e 1l-m )ml m - om
C m(l"m)J (1-m)(1-m)
; (1 - m )m' = 1.2, (5)
X lu{—-(T—g——,
. - m)J'
é or
] i m = m
- 0
(1 - m) (1l = m)
g (lf' m)m = 0.26 , (6)
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and for the case V >> U, i.e., in Fe-Ni alloy

m-m
m m

i(l “m)m -

imo(l - m)

0.67 . (7

In

Experimental results have shown that the evaporation time t
and the final solute concentration m are logarithmically related
(Refs. 3,5), supporting our Eqs. (1) and (2). However, these same
equations indicate that such relations are true only for vastly
different solvent and solute evaporating rates, and, in addition,
for small initial and final concentrations, m and m. These
same equations also allow one to compute, e.g., the effective evap~-
orating area, A, the solute or solvent evaporating rates U or
V, or the evaporating temperature T. Further, neglecting the
nonlogarithmic second terms in Eqs. (1) and (2) may introduce
errors in T, A, U, or V by 26 percent in the 807 Ni-207% Cr
case and 67 percent in the 607 Fe-407, Ni case.

The equations of normal evaporation can be made more realistic
by introducing the concept of solvent-solute interaction. If one
considers only first-o~der correction, then it can be shown that
the ideal evaporation : :s of solutes and solvents will be changed
by a new factor related to the activity coefficienc of the element
in question. In other words,

(8)
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where v,, v, are activity coefficients of soluce and solvent,
respectively, assumed constant in the vicinity of L and U’, V'
are effective evaporating rates of solutes and solvents. Using

the activity data of Fe-Ni alloy (Ref. 6) at 1600°C, we have

recalculated the values of G2' Now

where (9)

Yo = YFe = 0.977 for 60 mol 7 Fe alloy.

G (cal) = 0.4471 x 10™ sec.

On applying similar first-order correction for Ni-Cr system

(Ref. 7), the revised value of G, becomes,

G] (cal) = 0.2138 x 10 sec.

These corrections, while not very large, do make a little better
agreement between calculated and experimentally observed G values.

In conclusion, the simple normal evaporation approach seems
to give fairly accurate and useful predictions, even for the highly
concentrated Ni-Cr and Fe-Ni alloys.
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ABSTRACT

The kinetics of evaporation in binary alloys have been quanti-
tatively treated. The formalism so developed works surprisingly
well for several systems so far studied, notwithstanding the sev=-
eral major assumptions involved. In this memorandum, we have
studied the kinetics of purification of beryllium through evapora-
tion data actually acquired during vacuum induction melting. This
study shows that normal evaporation equations are generally valid
and useful for understanding the kinetics of beryllium purification.
The normal evaporation analysis has been extended to cover cases
of limited liquid diffusion. It has been shown that under steady-
state evaporation, the solute conceatration near the surface may
be up to six orders of magnitude different from the bulk concentra-
tion. Corrections for linited liquid diffusion are definitely
needed for the highly evaporative solute elements, such as 2Zn, Mg,
and Na, for which the computed evaporation times are improved by
five orders of magnitude. The commonly observed logarithmic rela-
tion between evaporation time and final concentration further sup-
ports the validity of our normal evaporation equations.
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INTRODUCTION

The kinetics of evaporation in binary alloys have been quanti-
tatively treated by C. H. Li (Refs. 1,2). The formalism so devel-
oped works surprisingly well for the several systems so far studied,
notwithstanding the several major assumptions involved. Specifi-
cally, in this normal evaporation approach, it is assumed that
a) the evaporating alloy is always homogeneous in composition,
b) the alloy follows Raoult's law, and c¢) the vapor is instantly
removed. In this work, we have studied the kinetics of puri-
fication of beryllium through evaporation data actually acquired
during vacuum induction melting by R. F. Bunshah and R. S. Juntz
(Ref. 3).
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EXPERIMENTAL DATA

The details of the vacuum induction melting procedure are as
follows. Beryllium (SR grade flakes) in the form of a cylindrical
compact was crucille-free induction melted under an ambient pres-
sure of 10-6 torr. The cylindrical compact was 1-3/4 inches in
diameter and 4 inches high, and weighed about 100-130 g. Since
the actual temperature of the melt was not known, for the purpose
of our computations, the temperature was assumed, for the sake of
comparison, to be 1500°C, a temperature commonly used in Be
melting (Ref. 3).
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EQUATION OF NORMAL EVAPORATION

The solutions of the kinetic equations for two important cases
are given in papers by Li and Mukhorjee et al. (Refs. 2,4). In
Case I, the solute evaporating rate, U, is much greater than the
solvent evaporating rate, V, i.e., U >> V. The equation re-
lating the evaporating time t, to final conceatration, m, |{is,

for this case,

a - m )m m=-m J

—_— Q
In mo(l - m) + (1L - mo)(l - m)J (1)

and in Case II when U << V, the evaporation time is given as
follows:

= Q:
tz Gzlln mo(l - + p— | s (2)
where

G1 = - No(l - mo)/AU

G2 - 4+ NomO/AV, and

m,m_= mole fractions of solute at t =t and t = 0O,
respectively.

G's are the time constants of evaporation. For Case I when
U >> V, solute depletion takes place (or m < mo) and, therefore,
the logarithmic term in the parcntheses is negative (the second
term in the parentheses is, for small values of m and m, neg-
ligible by comparison with the logarithmic term). Since the evap-
orating time t; must be positive, G1 must be negative. GZ’ on
the other hand, is always positive.
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In Table 1 the times ty, to reach the final concentrations
m from initial concentration m, (through evaporation from area A
and with an initial total of No moles of both solute and solvent)
for each element in the melt have been compiled using Eqs. (1) and
(2) above. In the table, the ideal evaporation rates at temperature
T°K of each element have been computed using the formula given in
Ref. 5, viz.,

for the solute:

A B /T
U= K10 S VET

and (3)

for the solvent:

A,B /T
V=K10 /’,/’MV" ,

where K= 5.833 x 107> for metals; A, B, A, and B are
+lemental evaporation constants given in Ref. 5; and the M's are

molacular weights.
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TYPES OF IMPURITIES

Three types of impurities can be distinguished:

Type I. - The impurities that have much higher evaporating
rates U than the solvent Be. For these impurities, such as Zn,

Na, and Mg, evaporation £q. (1) should be used.

Type II. - The impurities that have much lower evaporating
rates U than the solvent Be. For these impurities, such as Fe,
Cr, Ni, Cu, Ti, and 8Si, Eq. (2) should be used.

Type III. - The impurity that evaporates at about the same
rate as the solvent Be, i.e., U~ V. Only a single element,
Al, 1is in this group. For this impurity, a different evaporation

equation in infinite series form should be used (Ref. 2).
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PRELIMINARY DATA ANALYSIS

Since the exact temperature of the melt was not known, the
exact evaporation rates could not be computed. However, since all
the solute and solvent elements were evaporating from the same
liquid-gas interface of a fixed area A for the same length of time,
we can compute, from the measured mo's and m's, rtrhe values of
P, which is the pioduct of the evaporating time and evaporation
rate for a given solute with the help of Eqs. (1) and (2). The

value of P should be constant for all the solutes.

- - - - ... 1
el o gideal _ %o mg)lln - mgm + " To | (4a)
1 1 AU, | m(l-m " (1-m( - my) |
or
R "N(l"m). 1 =-mr) m=-m
i ideal . 0 o] ) o _
Hli=t s A |Maadw T a "ma-my|TF @

where t; is the estimated evaporation time computed separately
for each element at the assumed temperature of 1500 C. Similarly,
from Eq. (2) and thc ideal evaporation rate of the solvent Vi at

the same temperature, we have:

ideal

2 \Y

ideal ~ T -

In Table 1 are listed the value of P's for each element. P

is defined, as shown, such that

P= ti X Ui when Vi < U

P = ti X Vi when vi > Ui .

) B-11
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It can be seen from Table 1 that P is almost constant for the low

vapor pressure (Type I[) impuritics except for copper.

Because of our threce assumptions of normal evaporation, and
because of the assumed evaporating tempcrature of 1500°C, the
computed values of t, vary from element to element, even though
they should be identically the same. The variations in L how =

ever, are not very large so that the equations presented here are
still useful.

The high vapor pressure (Type [) impurities (Mg, Na, Zn)
a'so have uniform P values, which are roughly one order of magni-
tude higher than those for the low vapor pressurc (Type II) ele-
ments. The negative value of P for aluminum shows that aluminum
cannot be treated by Eqs. (1) and (2) because for this element
U~ V and a different evaporation equation in infinite series form

should be used.
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STEADY-STATE EVAPORATION

To explain the large variation in P values among different
types of impurity elements, one should consider limited liquid dif-
fusion. The concept of eftective evaporation rates, Ue and Ve

upon reaching a steady-state condition is now irtroduced.
= = n
P :eve constant (la)
or

civi = P = constant = teve , (2a)
where the subscrip:s i refer to ideal or normal evaporation val-
ues, wilile the subscripts e refer to effective or nonnormal val-

ues.

In the following paragraphs, the concept of Ue will be de-

veloped.

In normal evaroration, we assume that the evaporating alloy
is always homogencous, i.e., the liquid diffusion constant DZ = w,
But because of the large (orders of magnitude) differences in
evaporation rates of elements, the surface concentration of the
solute m in the melt is not the same as the bulk concentration
m, due to the limited liquid diffusion. Figure 1 depicts the
situation (at t =0) (i.e., initial), and after reaching steady
states, for the case U >> V.

For U >> V, the evaporating surface region soon becomes de-
pleted of solute, and the surface concentration of the solute, m
will be different from the bulk concentration, m, specifically,
m, << mo. After the initial transients, a steady-state for the
alloy system and evaporating conditions will ba reached. The steady-

Bueys
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liquid liquid
m°¢: m_
vapor
vapor ms
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Fig. la Initial State, Fig. lb Steady State,
t=20 t 2 tg

state concentration profile is shown in Fig. lb. The equation of
the profile, i.e., m versus x, can be derived according to a
procedure used by Tiller et al. (Ref. 6) in their study of freez-
ing with limited liquid diffusion, i.e.,

|

m=m (1+mi:—'—nﬂex’13x)' (5)
o) m p\Dé €

where the receding rate R of the evaporating surface can be com-

puted from Ui’ Vi, m, Mu’ Mv, and material densities.

In steady-state,

msUi = mOUe ’ (6a)
and
(1 - ms)Vi =(1 - mo)Ue , (6b)
or
m U m
s i Q
—o . "7 - . (6c)
(1 ms)Vi 1 m,

B-14
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Solving for m_,

mQVi,
m_ = " . (7)
s (1 mo)Ui + mOVi
Since
msUi = moUe’ (8)

where U is the cffective evaporation rate of the solute due to
the change in surface concentration. Substituting the m, from

Eq. (7) in Eq. (8) gives

Ms Uivi
Ue = ET'”i = (1 -m)Uu, +mV, ° )
o o’ i oi
Similarly, for the case V >> U,
a - mS)Vi = (1 - mo)Ve (10)
or
t- B Viui
V. *"T-a i O -ao)u, +ov. Y% - 1)
o o' i oi

Thus, it can be seen mathematically that Vé = Ue’ This means
that in both cases, U >> V, or V << U, the effective value of
U or V is the same. This equality means that in the steady-state,
the surface concentration m, does not change with time, as ex~-
pected.

Now consider Eq. (7) i1 some detail. Several cases can be
distinguished; these are:

B-15
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m V mV,
m = i - oL
s (1 mo)Ui Ui
or (11a)
m Vv,
S _ 4
m U,
o i
II. —V >>U
Yy
a) moVi >> Ui or -\7: << m (11b)
then
m =1
S
b)
Ui
moVi << Ui or 71- >> m (11c)
then
mV, mV
m = o i _ o
. s (L - mo)Ui Ui
when
mo N 0
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c)
vy
mV. ~ U, or T~ m
i i V, o]
i
then
| N 11
Mg T2 - m =2 (11d)
o)
when
m N 0 .
o =

The effective evaporation rate of the solutes, Ue’ can be
computed by Eq. (9). The effective evaporation rates have been
variably raised or lowered to equal the ideal evaporation rate of
the solvent (Be). In the case of high vapor pressure impurities
like Mg, Zn, Na, this means a lowering of evaporating rates by

about five orders of magnitude.

The surface concentration, m . and the ratio of surface to
bulk concentration have been computed in Table 1 by Eq. (7). These

ratios must also equal vi/Ui' Now we have

The effective time t,, to reach tiie final concentrations m
have been computed for all the impurities in Table 1; te should
be a constant. It can be seen that for the low vapor pressure im-
purities, te is almost constant. Again, the t, for Cu is one
order of magnitude less than others in the low vapor pressure im-
purity group. Among the high vapor pressure impurities, the te
is almost constant. It can be seen that t, for the high vapor
pressure impurities is one order of magnitude larger than that of
low vapor pressure impurities.

B-17
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NONIDEAL SOLUTION

The normal evaporation equations can be furtha:r modified by
introducing the concept of solvent-solute interactions. If one
considers deviation from thc Raoult's law, it can be shown that the
evaporation rates of solvent and solute w.ll be changed by a new
factor, the activity cocfficient. For very dilute solutions,
which we are considering, evaporation rates for solute and solvent
can be given by U'= v, U, and v/ = V,, respectively, where
is the activity coefiicient of the solute (Henry constant, in this

case).

In general, such consideration should not affect the estimated
time, te’ for the type I impurities (Fe, Ni, Cr, Ti, etc.), ex-
cept in the case of copper. From the available phase diagram, it
is evident that Be and Cu atoms have significant interactions
with each other and form many compounds (Refs. 7,8). Thus the
excess free energy for the system should be negative, resulting in

a lower value of cu compared to the ideal solution case
ideal . A '
(YCu 1.0). In such a situation, VBe

than U’ , and this leads to a greater effective time, t
Cu e,Cu

to reach the final concentration. The exact value of ‘VCU is

difficult to evaluate because of the lack of data in this composi-

is not very much higher

tion range.

In the cases of Zn and Mg, the solubi:.ity in beryllium is
negligible (Ref. 8) and so

one. This would lower the estimated time, oo meaning a better

Yon and ng should be greater than

agreement with the other elements.

It is important to note that exact calculation for the devia-
tion from the ideal solution case is difficult because of the lack

of data, and such estimations are purely qualitative.
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CONCLUSIONS

1. Normal evaporation Eqs. (1) and (2) are generally valid
and useful for the study of beryllium purification. This agrees
with a previous study on the results of Ni-Fe and Ni=Cr sys-

tems (Ref. 4).

2. The computed values of P = tiUi or tiVi are essen-
tially constant for the same type of solute elements. although dif-
fering by one order of magnitude between different types of ele-

ments.

3. The normal evaporation analysis has been extended to cover
cases of limited liquid diffusion. It is shown that under steady-
state conditions, the solute concentration near the surface, i.e.,
m_, may be up to five orders of magnitude different from the bulk

concentration, m .

4. Corrections for limited liquid diffusion are definitely
needed for the highly evaporative solute elements Mg, Zn, and
Na, for which the computed evaporation times, t,» are improved

by three or four orders of magnitude.

5. After these corrections, the compu:ced times are comparable,

even between different types of solute elements.

6. The agreement among the computed times can be furiher im-
proved by considering the deviation from the ideal solution condi-
tion. Because of lack of data,it is difficult to give any cuanti=-

tative calculation.

7. Estimations of solute evaporation behavior are now well

within one order of magnitude.
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8. The commonly observed logarithmic relation between evapo=
ration time t aud final concentration m further supports the
validity of our normal evaporation equations. Such relations are,
however, true only for widely different solute and solvent evapo-
rating rates and for dilute solutions, as can be seen from Eqs. (1)

and (2).
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APPENDIX C
MOMENTUM GAIN BY EVAPORATING SURFACES
by

James T. Yen
Grumman Aerospace Corporation
Research Department
Bethpage, New York 11714

In this appendix, we evaluate the rate of momentum acquired by a liquid surface

when its molecules are evaporating into a vacuum.

First, let us evaluate the evaporating rate and evaporating pres-ure by considering
the equilibrium case. When ti.2 surface is at equilibrium with its surroundings, the rate
of molecules leaving the surface by evaporation will equilibrate the rate of condensation,
resulting in zero gain o~ less hy the surface. These rates will be called the equilibrium
rates of evaporation and condensation, and an evaluation of one will yield the value for

the other. The condensing rate is readily given by

3

RT

&pV=o(§;) = —E— (1)
(27 RT)?

At equilibriam, the rate of molecules impinging on a unit surface area is }nv.
Here, n is the number density, o the mass density, T the absolute iemperature, and R
the gas constant of the molecules in equiliby ;um with the liquid. The equilibrium
evaporating rate i= also given by Eq (1); this is the maximum rate at which molecules
can escape from a liguid surface which is kept at a temperature T. Thus, the evapor-

ating rate intn a vacuum from this liquid surface is also givea by Eq (1.

The preseure p in Eq (1) is the vopor pressure at saturation. Sincc pressure is
a scalar quantity, it represents the sum - ihe pressures aciipg cn the surface by the
evaporating and the condensing molecules. At cquilibrium, these two contributions

equilibrate with each otner. Hence, the ecuilibrium evaporating pressure is equal to

-1
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half of the saturation vapor pressure. When the surface is surrounded by a perfect
vacuum, the condensing pressure vanishes and the pressure due to the evaporating
molecules is just given by the equilibrium evaporating pressure, or half of the
saturation vapor pressure. Consequently, we can expect that the rate of momentum
acquired by a liquid surface when its molecules are evaporating into a vacuum is

equal to half of the saturation vapor pressure. This is verified analytically below.

The molecules evaporating from a liquid surface kept at temperature T have a
3

- 2
Maxwellian distribution function n(2rRT) 2 e v '/2RT. Each beam of molecules

emanating with a velocity v from a unit surface area and at an angle 8 inclined from
the normal to the area carries a flux rate of nvcosg and a momentum rate of

2
mnv cos® = ovzcos 0. Hence the total momentum rate in question is given by
2

3 v
o{2rrRT) 2_/.[/;2coszee 2RT vzsinédvde. Integrating v from 0 to = , 8from 0 .0
—;— » and o frcm 0 to 2rr readily yields 3 oRT = p and completes the verification. If

the surrounding vacuum is imperfect, then the rate is given by
oo withr <1

a can be determined either from the given degree of imperfection or experimentally.
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APPENDIX D

NORMAL FREEZING OF IDEAL TERNARY
SYSTEMS OF THE PSEUDOBINARY TYPE'

by

c. H. Lif

November 1972

the Journal of Applied Physics

t
Research Department, Grumman Aerospace Corporation, Bethpage,
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ABSTRACT

Perfect liquid mixing but no solid diffusion is assumed in
normal freezing. In addition, the molar compositions of the freez-
ing solid and remaining liquid, respectively, follow the solidus
and liquidus curves of the constitutional diagram. For the linear
case, in which both the liquidus and solidus are perfectly straight
lines, the normal freezing equation giving the fraction solidified
at each melt temperature and the solute concentration profile in
the frozen solid was determined as early as 1902, and has since
been repeatedly published. Corresponding equations for quadratic,
cubic, or higher-degree liquidus and solidus lines have also been
obtained. This paper gives the equation of normal freezing for
ideal ternmary liquid solutions solidified into ideal solid solu-
tions of the pseudobinary type. Sample computations with the use
of this new equation were made and are given for the Ga-Al-As

system.
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INTRODUCTION

Perfect liquid mixing but no solid diffusion is assumed in
normal freezing. In addition, the molar compositions of the
freezing solid and remaining liquid, respectively, follow the
solidus and liquidus curves of the constitutional diagram.

For the linear case, in which both the liquidus and solidus
are perfectly straight lines, the normal freezing equation giving
the fraction solidified at each melt temperature and the solute
concentration profile in the.frozen solid was determined as early
as 1902 (Ref. 1), and has since been repeatedly published (Refs. 2-9).
Corresponding equations for quadratic, cubic, or higher-degree
liquidus and solidus lines have also been obtained (Refs. 10-12).
A recent publication presents the normal freezing equation for
ideal dilute solutions or alloys in which the liquidus and solidus
are exponential functions of the reciprocal absolute melt tempera-
ture (Ref. 13). The logarithm of the mole fraction segregation
coefficient km for the dilute component is, therefore, also a
linear function of the reciprocal of the absolute temperature.
Further, in such ideal solutions, the ratio of partial pressure
of each component, Py to that of the pure component, p:,
equals the atomic fraction x,, 1i.e., X, = pA/pZ. This last

A
cequation permits rhe computation of the solidification behavior

D~4
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of such solutions or alloys and the resultant solid concentration
profiles from basic thermodynamic quantities without the use of

phase diagrams.
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PSEUDOBINARY SYSTEM

This memorandum gives the equation of normal freezing for
ideal ternmary liquid solutions of A, B, and C atoms (Fig. 1)
solidified into ideal solid solutions of AB-AC compounds with
A atoms on one sublattice and B or C atoms on the other.
Such systems can be treated as pseudobinary systems. Account is
taken of the entropy of mixing of the three atomic species to
form the ideal liquid solutions along the pseudobinary.

A

AB AC

Fig. 1 Constitutional Diagram for a Ternary -
System of the Pseudobinary Type

D-6 N
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For the compound AB, we have
AB(s) = A(1) + B(1) . (1)

The equilibrium constant for the reaction is

A
R = A= 2)

o
AB

tion AFiB are related to K at temperature T by

and the standard free energy AF and the free energy of forma-

o £ '
- ¥ =
AFAB + A'AB RT In K . (3)

For the compound AB, the free energy of formation, AFiB,

is related to the free energy of melting, AFT and the heat of

AB’
m m
melting, AHAB’ at the melting point TAB by
m m m f
o AHAB (1 - T/TAB) = -OF,n = RT In 4 . (4)

It bas been assumed that the difference in heat capacity be-
tween the liquid and solid is negligible. The <~RT : ln 4 term
is the ideal entropy of mixing to form the stoichiometric liquid

phase. Hence,

X 'XB

m m
-RT 1n 4 = oHyp (1 - T/Ty) - (5)
XAB

Similarly, for the compound AC, we have
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-RT In &4 - - AH:C Q1 - T/TAC) , (6)

Xac
where Aﬂzc is the heat of formation of the compound AC, assumed
constant; and T:C is the melting point of AC.

For the ternec.y liquid phase of the pseudobinary,

xi'% ’
(7)
X +x1--§
B C
Hence,
R W |
RT In 4 - 4 xB/xAB 8H, o (1 T/TAB) , (8)
and

RT In4 - &+ (3 - xg)/(L - x5p) = aHh. (1= T/Th) . (9)

Equations (8) and (9) are essentially the same as those previously
given (Refs. 14,15). From these equations,

AH™

R S . _AB | m |

2 - X = X,p + exp R lllT 1/T c|
(10)

- sz * exp(a + b/T) = sz - U
AHT
12" xé = (1 - x:B) * expl- -—AQ 1/T - I/T:C}
(11)
- (1 - xZB) + exp(f + g/T) = (1 - x:B) c v

where

[T —
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m m m m
b"AHAB/R . a--b/'l‘AB , g--AHAc/R , and f--g/TAc (12)

are constants for a given ternary system of the type shown in
Fig. 1, while the temperature-dependent variables

U = exp(a + b/T) and V = exp(f + g/T) . (13)

Equations (10) and (11) yield the solidus equation for the

compound AB

s s
loxp U= (Q=x2) "V . (14)

Hence,
x:B = (1L -V)/U-V) . (15)

The value of x:B can be as small as zero when, according to

Eqs. (15) and (13), V = 1 = exp(f + g/T), i.e., when T = -g/f =

m 1 s
ac @nd xp = xAB/2 = 0 [Eq. (11)], as expected. The value of

x:B can also be as large as 1 when U - 1 = exp(a + b/T) in

T

accordance with Eqs. (15) and (13), i.e., when T = -b/a = T:B
and x; - x:B/Z = + [Eq. (10)], also as expected.

Notice that there are no AB or AC compounds in the melt,
while in the solid there are¢ only compounds AB and/or AC, but
no individual elements A, B, and C. Hence, the thermodynamic
molar concentrations x:B, xzc, xl, xé, xé'

Considering the ternary liquid or solid solutions as a whole,

and, without regard to crystallogiaphic lattice arrangements, we

D-9



can define the chemical molar concentrations m, s mB,

Evidently,

i 1, 1_. s, s,
P mp W =gt W < E o $
!i 1
s’ m;-xB ’ and
i my = % Xyp s
.
x
1
b

.
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THE NORMAL FREEZING EQUATION

We can now balarce the amount of component B in the remain-

ing liquid by its chemical molar concentrations m% and My and
’

then obtain the usual differential aquation for normal freezing

(Refs. 9, 11-13) as follows

dm1
1 2 s 1 e p (17)
mg ~ Ty

where p 1is the fract on solidified.
Substituting into the normal freezing differential equation

results in

b{l -v] -g(l ~-U

a = Yo 1
-[(I'U)+(1-V)+(1-'-;,Ad(T)
where
-9 )
o = g -1
1
L wrard S (18)
—e
LA
o
and
D-11
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q = exp(f - ga/b) )

r = exp Eé_:,%f.

s = exp I_D_fg_-_gg ) (19)

U, = exp(f +g/T )

V_ = exp(a + b/To)

0
p.
and
[1 . UO]“ [1 -V ]E ll . vo/uo}V
p=l- T "IT=%v | " |T=7/% (20)

where To is the initial freezing temperature and can be deter-
mined from the pseudoliquidus line on substituting fo- x1 the

AB
1 1
initial melt composition, xAB,o = 2 xB,o'

D-12
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THE Ga-Al-As SYSTEM

This ternary system can be considered as a GaAs-AlAs pseudo-

binary. 1In the liquid melt, we have

1 1 1 1 1 1 1
xB + x.C = xCa + xAl mB + mb mG

In the GaAs-AlAs mixed crystal, we have

S - st
xGaAs Ga
S - 2mS
XAlAs Al

]

Xcaas T *alas Ga

s s s
+ x = 2(m. + mAl) = 1.0

= 0.5

To determine the phase diagram [i.e., liquidus and solidus,

Eqs. (8)-(15)] and, in additiocn, to compute the normal freezing

behavior according to Eqs. (18)~(20), the following four thermo-

dynamic constants are required (Ref. 14 gives the values of these

constants):
® Melting point of GaAs
° Melting point of AlAs
° Heat of formation of GaAs

L Heat of formation of AlAs

D-13

1511 K
2013 K
16.64 Kcal/mol

22.8 Kcal/mol
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Hence, a = 5.700, b = -11,470, f = 5.542, g = -8,374, q = 3.983,

r = 0.1505, s = 166.5, a = -1.335, B = 0.1772, and v = 1.006.
Table 1 summarizes the solidification behavior of the Ga-Al-As

system, treated as a pseudobinary. The first three columns describe

the phase diagram, i.e., the concentration of aluminum in the liquid

melt xl and that of AlAs in the solid crystal x5 at tem-

Al AlAs
peratures from 1720°C down to 1233°C at 20°C intervals. The
next two columns, obtained from the first three, show that the

. . . . _ s 1
segregation coefficient k for Al, 1i.e., kAl = xAlAs/ZXAl’

3 . 3 — - S
always exceeds unity while that of Ga, i.e., kGa = (1 xAlAs)/
(1 - 2x:1), never does so except at 12383°C. Both of these segre-
gation coefficients, however, are widely variable, increasing with
decreasing melt temperature, by factors of over 6.3 in the case

of kA and of over 3.7 in the case of kGa' Thus, for this

1
system, as well as for many others the linear normal freezing equa-
tions (Refs. 1-9) involving constant segregation cce fficients are
generally not applicable.

These phase diagram data can, of course, be obtained also by
means of the equations of Ilegems and Pearson (Ref. 14), or those
of Steininger (Ref. 15). The direct computation of the normal
freezing data from basic thermodynamic constants, however, appears
to have never been attempted or published. By means of Eqs. (18)

and (19) of this memorandum, these normal freezing data are cal-

culated and given as the last nine columns. Here, the fraction

D-14

ol « W — [1 v




% groc = V1Y low/(eoy 8°2Z =

¥ rrst = ¥ Tow/Tean 99 9p = "oy

:uogIPIndwod a3yl UY pPasn SIULISUOD ITweudpomiayi Odyseqg

m<u<zr

0000°'T 0000°T 0000°T 0000't ©0000'Tt 0000'T 0000°T 0000°T 0000°T ONDOO'TL €%9°9 0000°0 0000°0 8E21
T866°0 6%66°0 0066°0 8§286°0 €Z(6°0 %9S6°C 90{6°0 6EB8°0 Z8L1°0 €T66°0 €£5°9 1600°0 L0000 0O%Z1
6966°0 1166°0 SI86°0 6696°0 91S6°0 BEZ6°0 (VL8O 0L6L°0 OZI9'0 C€26°0 %56°S  6060°0 9£00°0 091
0966°0 $896°0 €LL6°0 1196°C %L(€6°0 »106°0 1€%8°'0 SLEL°0 2860 %098°0 L0%'S 0991°'0 ¢€S10°0 0821
0566°0 BSB6°0 0ZL6°0 0366°0 £I26°0 CTBLR'O0 T908°0 [S{9°0 T0BC°0 %€08'0 ZI6°Y BYEZ'O 6E£Z0°0 OOLY

0766°0 9786°0 0996°0 €I%6°0 €906°0 SISH'0 IS9L°0 OLO9°D 68920  SISLT0  Z67°% SB6Z°0 ZEEOTO0  OZET
8766°0 €6L6°0 €6S6°0 Z0€5°0 ((BB'0 I€Z8°0 SBIL'0 6BZS'0 S660°0 I%0L°0 BO0T'% TLSC'0  SEY0°0  O%Cl

7660  9SL6°0 SIS6'O  6916°0  7998°0  Z68.°0 9¥99°0 9BEY'0 ==~  L099°0 S9L'C  STIv°0  9950°0  09€I
£696°0 BOL6°0 7Z76°0 €106°0 TI%8°0 H6wL°0  8109°C  SEEL’0 01Z9°0 857 €  6199°0  §990°0  OBEl
896°0 9696°0 BIE6°0 1¢88°0 [I18°0 ©EOL'0 08Z5°0 101270 S78S°0  €SI'E  680S°0  66L0°0  0OWL
9696°0  06S6°0  2616°0  ¥198°0 69/L°0 99¥9°0  BOYP0  1%90°0 O1S5°0  SE€6°Z  B255°0  2v60°0  0ZYT w
6796°0 E£156°0  1706°0  (SE8°0 SSEL°0  VEES O  69EE0  -e- 0025°0 ZIL°Z  9E6S°0  S60T'0 %M n
£616°0 TZ%6°0 1988°0 §%08'0  (S89°0  6%0S'O  OZ1Z'0 S16v'0  O1S°Z  €269°0  6SZI°0 0991 A
95.6°0 OT€6°0 Z798°0 ZL9L°0 529°0 96070  7090°0 Z597°0  8IE'T  9899°0  9EYL'0 O8I
OTL6°0 %4160 I(€9°0 112L°0 O0I1SS°0 9262°0 === 80vv°0  791°Z  920L°0  %Z91°0  00ST
0S96°0  *006°0 (£08°0 L£99°0 S¥SV'0  OLYT'O 2817°0  210°Z  S¥ELD 9T8T'0 0281
S166°0  ¥BL8°0 C19L°0 016570 SIZE'0 === ZL6E°0  %LB'T  6¥9L°0  O0WOZT'0  O%SI
L(76°0 O1S8°0 990(°0 1.6%°0 %061°0 9LLE°0 69L°1  LE6L°G  89ZZ'0  09ST
§7€6°0 77180 0769°0 820 - €6SE'0  SE9°1  OTZ8°0  OIST'O  08ST
2(16°0  ¥E9L°0  6TES'0  6I0Z°0 SZ9E'0  0ES°1  OLY8°0 L9LZ'0 0091
0768°0 1269°0 SE6£°0  ~--- [92€°0 SEY'1 B8O  SEOE0  0Z91
1768°0  6€85°0  SO81°0 OZIE'0 9%E°T  $568°0 SZEE'D  OYIT
12600 zl0%'0 === 4 7862°0  997°1 18160 £29€°0 0991
9L19°0  6090°0 PILIIPITOS GoTIowAd 7682°0 1611  66£6°0 996€°0 0891
96190 --- 1642°0  ZZU'T L0960 1827°0  0OLT
--- £192°0  50°T  8086'0 €€9v°0  OZLT
$»6¢  ov'0 sc'0 ot0 szo  ozo sto oo 0.0 "y Ma MM T 5

1 a1qe}

.. ¥ -y o s RN . - e Frvemp P we % # v ey Frrpe—— Ba Arn o gy i ﬂdl:.lJ { wnetwe;
bs L DLl s e e e i v B e~
[S— | —; —————— [P 1. J = j v L i b >}

. " TP 6 S I A SRl e A AR E ] LS S S M B S W e PO TS € A G b M BN o ) D 4 a0 s MG % <6t ¢ M e . ey S20r g AN N f
24 o4, ek sl . . . * U OB SR D A B

T, 40 AN T



. -

i

i

AL e WOt i Bk N2 i e MY s s 3 Mt 10 m b albores amntt n L

L

solidified, p, 1is given as a function of both the melt tempera-

ture, T, and the Al concentration in the original liquid melt,

x1
Al,o’

concentration of AlAs in the solid crystal, leAs’ against the

The concentration profile can be obtained by plotting the

fraction solidified, p, for the appropriate initial Al concen-

1
tration in the melt, xAl,o'
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OTHER SYSTEMS

Many other ternary systems can also be treated as pseudo-

B

binaries. The necessary thermodynamic constants are usually

available in the literature. Steiringer (Ref. 15), for example,

patitarg
brrange

has examined a number of important systems and given the neces-

uriamy
e

sary thermodynamic constants required to compute the solidificu-

P e = P VAL DU e P RS RS

W wmed

tion behaviors and the phase diagrams. These systems include:

InAs-GaAs, InSb-InAs, InSb-GaSb, GaSb-AlSb, InSh-AlSb, CdTe-ZnTe,

Ty fln: iy
| —

CdTe-CdSe, HgTe-CdTe, GeTe-MnTe, PbBr,-PbCl InAs-InP, SnTe-PhTe,

2 2’
PbTe~-PbSe, HgTe-HgSe, ZnTe-ZnSe, and HgTe-ZnTe. For the first

it rveeond

[ ]
i

13 systems, his calculated solidus curves are in good to exccllent

r::::.

agreement with the published experimental values. These systems

can, therefore, be considered ideal. One can thus compute with

R N WP RIS o i o RA e A I By BT S e

d b 3

some confidence their normal freezing bebaviors according to

Eqs. (18)~(20) of this memorandum.
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ABSTRACT

In the study of normal evaporation, it is assumed that the
evaporating alloy is homogeneous, that the vapor is instantly
removéd, and that the alloy follows Raoult's law. The differen-
tial equation of normal evaporation relating the evaporating time
to the final solute concentration is given and solved for several
important special cases. Uses of the derived equations are ex-
emplified with a Ni-Al alloy and some binary iron alloys. The
accuracy of the predicted results are checked by analyses of
actual experimental data on Fe-Ni and Ni-Cr alloys evaporated
at 1600°C, and also on the vacuum purification of beryllium,
These analyses suggest that the normal evaporation equations pre-
sented here give satisfactory results that are accurate to within
an order of magnitude of the correct values, even for some highly
concentrated solutions. Limited diffusion and the resultant sur-
face solute depletion or enrichment appear important in the ex-

tension of this normal evaporation approach.
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INTRODUCT ION

s

In normal evaporation, we assume that the evaporating alloy
is always homogeneous in composition, that the vapor is instantly
removed, and that the alloy follows the Raoult's law (Ref. 1).
Such conditions exist or are approached in an induction-stirred,

fod

¥
e

melt-in=vacuum or liquid drop-in-space.

amd

: This memorandum deals with the normal evaporation of binary
N alloys. In particular, we study the evaporative segregation pat-
terns, i.e., th. :-ype and degree of enrichment or depletion of

| —

solute in the evaporating source, at different evaporation tempera-

RN

[
\J tures and times.
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DIFFERENTIAL EQUATION OF NORMAL EVAPORATION

The appendix of Ref. 2 gives the exact solution for the normal
evaporation of binary alloys. This equation relates the concentra-
tion of the solute, m, at a time, t, when the mole fraction of

the alloy remaining is F, as follows:

ﬁ%’ ) -y
. U= “m
F = ﬁ; - (;,“:;) (=9 (1)

where N and No are, respectively, t~. .umber of moles of both
solvent and solute at evaporating times t =t and t = 0; m is
the initial molar concentration of the alloy; and U and V are,
respectively, the evaporation rates of pure solute and solvent.

For pure solute and solvent, respectively, these evaporation

rates in mol/cmz/sec are

A =B /T

vegk * " (MuT)-% (2)
and
A -B /T .
v=gki1o 'V V M, T) H (3)

3 a, a = 1 for most metals (Ref. 1); M

where K = 5.833 x 10 "
and M& are, respectively, the molecular weights of the solute
and solvent atoms; T 1is the evaporaiing temperature in degrees
Kelvin; and A, and B, or A, and B, are evaporating con-

stants for the solute or solvent given, for example, by Ref. 1.

E-6
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Differentiating Eq. (1) yields

(U - V)m(1 = m)
" [mU + (1 - m)V)N

dm dN (4)

but
dN = - [mU+ (1 - m)V]A * dt (5)

where A 1s the evaporating area of the alloy, assumed coi.stant

here.

Substituting Eq. (5) into Eq. (4) results in

dt = Gm (1 ~ m)dm (6)
_ where
N (1 - m)%+2
' ?’ i‘ G= - @ oa+]_ (7)
. P A(U - V)mo
i
- a= (2V - U)/(U - V) (8)
L
b B = (V~20)/(U - V) (9)

E-7
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SPECIAL CASE SOLUTIONS OF THE
NORMAL EVAPORATION EQUATION

Equations (6)-(9) allow us to determine the evaporating time,
t, for an alloy to reach a specific solute concentration, m. Un-
fortunately, these equations are not exactly solvable in the gen-
eral case. All of the following special and important cases, (ex-
cept Case V), however, are solvable in closed forms.

Case I: The solute is much more evaporative than the solvent,
i.e., U>>V; or a=-1 and B = -2, In this case

G,dm

(10)
1 m(l - m)2

where

N(@d-m)
1 AU

and

1 -m)m m-m
Lo a)n o
a(l-m  (1-m)d-m (11)

t, = G,|4n

1 1

When m ~ m the second term in the bracket is nearly O.
The evaporation time for this first case, tys is then a logarith-

mic function of m, as has been experimentally observed (see e.g.,
Ref. 3).

Also, when m ~ m x 0,
Y, %
t) > fn 2 (12)
E-8
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Case II:
solute, i.e.,

where

and

The solvent is much more evaporative than the

VU

t2 = G

or a= -2 and B = -1,
G.,dm
dt2 = -—-2'--5
(1 - mm
G, = EQEQ
2 AV

l-m)m m-m
£n 2 _ 0
2 m (1 - m) mm
o o

For dilute solutions (i.e., m ~ m ~ 0),

logarithmic function of m,

Case III:

where

Case 1IV:
In this case

aQ = (2V - U)/(U - V) =0, i.e.,

B = (v

3{(1 - m)..2 -1 - mo)-z}

- 2
c - - N (1 -m)

3 ZAVmo

-2U0)/(U - V) =0, i.e.,

t4 - G4 (m”2 - m;2>

t

2

as has been observed.

In this case

(13)

(14)

also becomes a

U=2V and B = -3

(15)

V=20 and a = -3,

(16)
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where

N m2
00

4 2au(1 - mo)

Equations (15) and (16) show that under some conditions, the
evaporating time, t, is more adequately represented by linear
functions of (1 - “0-2 or m-z, rather than by legarithmic func-

tions of m.

Case V: For relatively dilute alloys, i.e., m and Pfm <~ 1,

the following solution by series expansion can be obtained from
Eq. (6):

2 i
m fm
dt. = Gn’|1 - Bm + (Em) + e+ (- 1)1 Bm) + ---! (17)
5 21 il j
and
a+l _ o+l at+2 _ _at2 at+i+l | a+i+l i
m m m “m m -m .

Q - o L - Q pi LI BN
s =67 a + 1 a+ 2 B+ +(1)(a+i+1)i! - (18)

For computer calculations, it is desirable to know the ratio

of the ith term to the (i - 1)th term, thus

a+i+]l _ a+i+1
Ti B(a + 1)/ m )
- = (19)

T,. at+i _ ot
i-1 i@+ i+ 1)(m mott)

which is generally less than Pm/i or Bmoli.
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Because Pm << 1 and i constantly increases with each addi-

tional term, this series converges rapidly unless B 1is very large,
i.e., unless U = V, which leads to the following interesting case:

Case VI; The solute and solvent are evaporating a: equal rates,

i.e., U= V. In this case, we would expect
m=m for all ¢ . (20)

There is, then, no evaporative segregation, that is, there is

neither solute enrichment nor depletion in the evaporating source.

For any pair of solvent and solute, there is a unigue tempera-
ture, Ts’ at which U = V and, hence, the alloy concentration

remains stable or constant. Equations (2) and (3) give:

B - B
u 54
T, = — 5 (21)
S A, " A 0.5 log(Mu/Mv)

Case VII: With extremely dilute alloys, i.e., m~r m ~ O,
we have (Ref. 2)

F = N/N_ = (m/mo)a+1 (22)
Hence,
EQ[ a+1}
t7 = AVll - (m/mo) ] (23)
E-11
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EXAMPLES OF COMPUTATION

® The Ni-Al System:

As an example of the use of the various derived equations,
the evaporation behavior of an alloy containing 8 percent by weight
of Al in Ni at the melting point of pure Ni (i.e., 1453 C)
is computed. Here, the solute element (Al) 1is compar.clvely
highly evaporative relative to the solvent (Ni). Equation (1l1),
therefore, applies, and the time, ty» to reach a final solute
concentration m from a specified initial cor~entration, m_ . is
directly proportional to NOA/U ‘in the G, constant). Table 1
gives the times to reach various final Al concentrations for one
mole (53.66g) of the 8 percent Al iu Ni alloy (mo = 0.159)
evaporating at 1453°C from its (supposedly constant) 10 cm2

surface.

Table 1

NORMAL EVAPORATION OF 87 BY WEIGHT ALUMINUM IN NICKEL AT 1453°C

Final Solute Evaporation
Concentration Alloy Remaining Time (sec)
Weight Mole
Fraction Fraction Weight (g) Mole
0.080 0.1590 53.66 1.0000 0.00
0.079 0.1573 53.60 0.9977 14.08
0.078 0.1555 53.53 0.9955 28.29
0.077 0.1536 53.47 0.9932 42.64
0.076 0.1518 53.41 0.9910 57.12
0.075 0.1500 53.34 0.9887 71.75
0.074 0.1481 53.28 0.9865 86 .54
0.073 0.1463 53.22 0.9842 101.46
0.072 0.1444 53.15 0.9820 116.55
0.071 0.1426 53.09 0.9798 131.80
0.070 0.1407 53.03 0.9775 147.22
E-12

N et e el b



4 1 M W am

[ ]
[

- e hras d L PR T
gl
" . N f
BT SN e R TR e I R SRR PN TR Wl 1 R
( 3 ha
[ ] [ L KT |

[Ere—

¢ Iron Alloys:

The evaporation behavior of binary iron alloys containing 20
different solute elements has also been studied. Table 2, listing

Table 2

EQUI-EVAPORATIVE TEMPERATURES FOR
TWENTY BINARY IRON ALLOYS

Solute gégofé Ts’ °C Solute gégoéé Ts‘ c
cd 3.765 x 10° 13,540 W 4.412 x 10712 -69,590
Zn 2.065 x 10° 15,610 c 8.210 x 10”2 5,263
Mg 9.074 x 10° 19,610 Mo 1.879 x 1077 -12,130
Ca 5.503 x 10° 9,335 zZr  1.950 x 10°°  -47,790
Pb 3.333 x 100 4,976 B 6.832 x 10 ° 9,510
Mn 1.070 x 10° 20,740 v 3.804 x 10> 8,574
Al 45.65 7,918 Ti  2.254 x 1072 34,650
Cu 12.25 5,613 Co  4.362 x 10 1 4,318
Sn 9.978 2,686 si  5.238 x 10! 2,825
Cr 3.158 -215 Ni 5.897 x 10 ' 3,036

the equi-evaporative temperatures for these 20 different alloy sys-
tems, also gives the ratios of the solute evaporating rate, U, at
1600°C, to that of the solvent iron, V. At 1600°C, 10 of these
solute elements evaporate faster than the solvent (the three left

columns) and 10 slower (the three right columns). Moreover, these
ratios vary widely over 18 decades, from &4.41 x 10.12 for the
slowest evaporating, W, to 3.76 x 106 for the fastest evap-

orating, Cd. Because of this wide variation in evaporating rates,

E-13
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and because of the extreme sensitivities of the evaporating surface
to unsuspected contaminants, predicted or experimental evaporating

results cannot generally be very accurate.

The equi-evaporative temperatures in iron alloys also vary
widely. Binary iron alloys containing Cr, 2r, Mo, and W have
no practical equi-evaporative temperatures. One can, therefore,
always expect these alloys to change compositions continuously

with the evaporating time.

Table 3 shows the effect of evaporating temperature on the
U/V ratios for four different solute elements Mg, Ca, Mn, and
Al. In the range of 1500°C to 1900°C and beyond, increasing

Table 3

EFFECT OF SOLUTE ELEMENTS AND EVAPORATING TEMPERATURES
ON THE VALUES OF U/V_(x 1000) IN IRON ALLOYS

Solutes

Temp

(°c) Mg Ca Mn Al
1500 2132.0 118.2 1.649 0.06037
1600 907.4 55.03 1.070 0.04565
1700 421,2 27.68 0.7261 0.03552
1800 210.5 14.88 0.5110 0.02831
1900 112.1 8.466 0.3719 0.02304

the evaporating temperatures always decreases the U/V ratios.
This can also be seen from Table 2, as the equi-evaporative temper-
atures shown for these four binary iron alloys are higher than
1600°C, at which temperature the four solute elements evaporate

E-14




much faster than the solvent iron. Table 3 also shows that for the
same temperature variation, the more evaporative the solute element,
the more percentage variation the U/V ratio. In the case of Mg,
e.g., the U/V ratio decreases by about 20 times from 1500°C t¢
1900°C, whereas for Al, the same ratio decreases only by less

than three times over the same temperature interval.
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Figure 1 shows the effect of solute elements and evaporating
temperature, T, on the evaporating time t, for a given set of

(PP

[IORREE |

initial and final solute concentrations (i.e., m = 0.01 and

Py
L nd

m= 1 ppm). For given m and m, the log t versus 1/T curves

o Ui it

) for these highly evaporative solute elements are approximately lin-
;j ear and have positive slopes. This can be expected from Eq. (1l1)
since, for given m and m, log t 1is linearly related to
Pl B/T - 0.5 log T, and since 0.5 log T is small relative to B/T
within the evaporating temperature range studied. Thus, one can

! determine, from Fig. 1, the value of the elemental evaporating con-

stant B, or heat of evaporation AH = 4.574 B (Ref. 1), for the
- solute elements by plotting 1log t versus 1/T and measuring the
slope of the resultant, nearly straight lines.

In Fig. 2, the log t versus 1/T relationships also appear
nearly linear for all the four different initial concentrations
(ie., m =101, 207%, 1072, and 10™%) of Al in Fe. This
. . can also be seen from Eqs. (11) and (12). All these nearly straight
Q-L ; lines have identical slopes, from which the heat of evaporation of

pure Al can be evaluated.

Nt ot

Figures 3 and 4 display the effect on the evaporating time,
t, of final solute concentration, m, and either initial concen-

. 2

tration m (in Fig. 3) or solute elements (in Fig. 4).

-y

Figure 5 indicates that Mg, Ca, and Mn in Fe alloys are
- so evaporative at 1600°C that practically all >f these elements

! - E-16



g, CUNRERELTE BT T 4

FRT S il L I

R R A B )

O .

10°
Al
10 1 -
0 Mn o SOLVENT: Fe :
2 P mO = 0.01
I LUTE
0 SOWUTE - ° 1 oo

EVAP, __'//Ci,’/
SEC
1 :_____—_‘_‘_ﬁgl———"“‘—__——_—

i J

1 1
4.6 4.8 5.0
llTkx

i
5.2 5.4 5.6

10 |

1900 1800 1700 1600 1500

EVAPT,

Fig. 1 Evaporating Times for Different Dilute Iron Alloys
to Change Concentration from my = 0.01

°C

sy

to m= 1 ppm

E-16



3 i % ” 3
Aol it S i 3 “
oo I I
22 N

usbang
[ 2 ]
o
o
[
o

/10

me INITIAL

Vo]
bt
c-b
T

T EVAP t,
i1 SEC ; CONCENTRATIONS
&t 10 o SOLVENT «FeT, =T +215°C
. e SOLUTE=Al em=1ppm
5 L 102 R I B | I L1
- 4.6 50 54 5.8
i 1 x10
!j 1 l 1 J
1 1900 1700 1500
ﬁ EVAPT, °C
! Fig. 2 Evaporating Times for Dilute Iron Alloys Containing
Al and Starting at Four Different Initial
! Concentrations, to Reach a Final Concentration of
m= 1 ppm
' E-17

S v~



FEw, T

S o

T Ce .

.
B e i N e PR U PR

e SOLVENT: Fe
e SOLUTE: Al
o TEMP =1600°C

20K ™
15K

EVAPt, 10K[
SEC :

My INITIAL

Kr CONCENTRATIONS
L | | i [
0% 1% 1% 108

FINAL CONC, m
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are removed by evaporation, without much evaporative loss of the

solvent Fe atoms. On the other hand, Al 1is comparatively less
evaporative so that much of the solvent Fe atoms are evaporated
off together with Al, To achieve a purification factor of 107
(1.e., to m= 10-9) from m, = 0.01, for example, the initial

evaporating alloy must lose over 30 percent of its material.
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ACCURACY OF PREDICTED RESULTS

To check the validity of our derived equations for normal
evaporation of binary alloys, the current literature has been
searched., Several sets of alloy evaporation data have been found
that are amenable to ncrmal evaporation analysis. These sets in-

clude the following:
® The Fe-Ni and Ni-Cr Systems:

An analysis has been made of the data by Obradovi. et al.
(Ref. 4) for Fe-Ni and Ni-Cr alloys evaporated at 1600 C
for different times under various ambient pressures. 1ln the
807 Ni-207 Cr case, evaporation started with No = 0.7582 moles
of the alloy having an evaporating area A = 10.0 cmz. The solute
and solvent evaporating rates are, respectively, UCr = 3.479 x 10-5
and VNi = 6.386 x 10“6 mol/cmzlsec. This is a case where the
solute, Cr, 1is comparatively highly evaporative relative to the
solvent, Ni. Hence, the evaporating time ty given in Eq. (11)

applies, i.e.,

[ Q1 -n)m m-m ]
= !
t) = G1[£“ m(L-m -yl - m |

where G = "N, (1 - mb)/AU, and m aand m are the initial and

final molar solute concentrations in the alloy.

Least square. fits of the Obradovic data give nearly constant
values of observed G,: -1.785, -5.064, and -5.064 (x 10° sec)
for ambient pressures of 1, 100, and 500 (x 10-3 torr). The cal-
culated values of Gl’ though also nearly constant, are, however,
one order of magnitude smaller, indicating surface solute depletion.
Similar analysis for the 607 Fe-40% Ni alloy evaporated with
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N, = 0.7478 moles and A = 10.0 ca’  glves Uy = 6.386 x 10

and vFe = 1,081 x 10-5 mol/cmzlsec. Here, the solvent Fe is
much more evaporative than the solute Ni, and Eq. (14) ap: lies.
The values of observed evaporating coefficients 62 = mONO/AV are
2.469, 1,369, and 8.386 (x 104 sec), for ambient pressures of
1, 100, and 500 (x 10-3 torr), respectively. The calculated
Gz's are again nearly constant but also an order of magnitude
smaller than the observed G,'s, again indicating solvent deple-
tion (or solute enrichment) at the surface. Details of these

analyses are given in Ref. 5.

¢ Beryllium Purification

The kinetics of normal evaporation for beryllium have been
quantitatively checked with actual results of beryllium purifica-
tion during vacuum induction melting. Details are given in Ref. 6.
In these tests, beryllium was crucible-free, induction-melted under
an ambient pressure of 10-6 torr. The actual temperature of the
melt was not known, and the exact evaporating rates for the beryl-
lium solvent and various solute elements cannot be computed. How-
ever, because all solute elements (i.e., Fe, Cr, Mn, Ni, Si. Al,
Mg, Cu, Zn, and Na) and the solvent, Be, were evaporating
from the same or common liquid-gas interface of a fixed area for
the same length of time, we can compute the values of P, defined
as the product of the evaporating time, t, and solvent evap-
orating rate, V (for V >> U), or solute evaporating rate, U
(for- U >> VY); thus: .- P = t¥ cr U, _Tabtle /. gi-res the initial.
concentrations and final concentrations (in ppm) of the various
solutes, together with the value of P, actual surface concentra-
tions, ratio of actual surface to bulk concentrations, and effec-
tive times to reach the final concentrations under the assumption
that the evaporating temperature was 1250°C. The following con-

clusions can be drawn from Table 4:
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The solute elements can be divided into three groups:
Fe, Cr, Ni. Ti, and Cu evaporate much more slowly
than Be; M, Zn, and Na evaporate much more rapidly

than Be; Al evaporates at about the same rate as Be.

The computed times to reach the final concentrations
under normal evaporation conditions (complete liquid
mixing) are fairly constant for the solute elements

that evaporate much slower than Be (i.e., Fe, Cr,

Ni, Si, and Cu), being about 4 x 104.

The computed times to reach the final concentrations
for the highly evaporative Mg, Zn, and Na are also
fairly constant, but about four orders of magnitude

smaller.

After correction for limited liquid mixing (Ref. 7),
the effective times to reach the final concentrations
are much more constant, even between the groups of
solute elements. In particular, the highly evapora-
tive elements Mg, 2Zn, and Na have their results

improved by several orders of magnitude.

Limited liquid diffusion must, therefore, be con-
sidered, particularly for the highly evaporative

elements.

The surface solute concentrations can be changed by
up to six orders of magnitude, so that the effective

evaporating rates can be similarly changed.
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DISCUSSION AND CONCLUSION

These and other similar analyses suggest that the normal evap-
oration equations presented in this Memorandum work surprisingly
well for the several alloy systems studied so far. These equations
generally give results accurately to within an order of magnitude
of the correct values, perhaps even for highly concentrated solu-
tions (e.g., 20% Cr in Ni or 407 Ni in Fe). Such accuracies

are usually sufficient for many evaporation studies.

In other more critical studies, however, refined evaporation
analyses may be needed. In particular, the effect of limited dif-
fusion and, hence, surface depletion or enrichment of the solute,
must often be accounted for. This is true especially for the
highly evaporative solutes such as, e.g., Mg, 2n, and Na in
the solvent Be. We already have results that confirm this con-
clusion. Details of these results will be published in Ref. 7 and

elsewhere.
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APPENDIX F

A NEW MECHANISM FOR THE FORMATION OF GROWTH SPIRAL‘r
+
Chou H. Li

Franklin F. Y. Wangi
Kedar P. Gupta;

ABSTRACT

A new mechanism is proposed to explain the fornation of
growth spirals in controlled melt-grown, crystalline samples of
Ba4SrNb10030. Several distinguishing features of these spirals
cannot be explained on the basis of the classical, core-first
growth theory. These features are examined in detail, especially
in comparison with the inherent or implied features of the classi-
cal spiral modecl. Characteristics of the spirals are predicted

based on solidification theory, and are found to be in agreement

with the observed results.

?Presented at American Association for Crystal Growth, 2nd Symposium,

Princeton University, July 1972. Submitted for publication to the
J. Applied Physics

*Research Department, Grumman Aerospace Corporation, Bethpage,
New York 11714

§Materials Science Department, State University of New York at
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Introduction

The spiral growth mechanism was first proposed by Frank

(Ref. 1) in 1949 and has been developed into the classical BCF

model (Refs. 1-3). Spiral markings had, however, long been ob-
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served on silicon carbide crystals (Refs. 4-5). Since 1949, many

more spirals have been observed during evaporation-condensation

MRER BB, M i

(Refs. 6-7) and solidification (Refs. 8-10). Some of these spirals

are rounded (Refs. 9) while others are segmented (Refs. 8-9).

S S o F W e

The BCF model has been able to explain many of the observed
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R

effects and growth features. However, in our controlled crystal
growth experiments on Barium Strontium Niobates (BSN), we observed

some new phenomena that cannot be easily explained by the classi-

1 cal BCF model. In fact, some of these observed phenomena contra-
dict the same model. This paper briefly describes the implications
of the classical BCF model and some experimental results recently
observed on these niobates in our laboratory. From these results
we propose a new spiral growth model which seems to explain better

the observed effects on the niobate materials.

Existing Theory

According to the BCF model of spiral formation, a nucleus is
formed at a favorable spot on the solid substrate surface, and ad-

ditional atoms then solidify or condense from the liquid or vapor

) mmuwmn—.mm.._ -
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phase to spiral around this nucleus, i.e., to form the spiral.
The distinguishing features of this theory are:
1. The spiral starts at its center or core region
in the form of a screw dislocation and spirals
out.
2. Adjacent or successive turns of the spiral should
be separated by a thin boundary no thicker than a
subgrain boundary, i.e., angstroms thick, since
even the grain boundary in a polycrystalline mate-
rial is generally believed to be only 10f or
less thick (Ref. 11).
3. The primary temperature gradient is perpendicular
to the plane of the spiral (Ref. 10).
4. The step height in spirals, at least according to
the BCF model, should be only one atomic layer

thick.

Experimental Procedures

| .By using standard sintering techniques, polycrystalline
samples of hypoeutectic composition (4BaNb206 : SrNb206) were
prepared (Ref. 12). The raw materials used in preparing these
ceramic samples were: barium carbonate, from J. T. Baker, re-
agent grade; strontium carbonate, from J. T. Baker, reagent grade;

and niobium pentoxide, from A. D. Mackay, 99.9 percent. The
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sintering was done at 1350°C for more than 80 hours in air and
the sintered material was checked for the completion of chemical
reaction by using an IRD-Guinier camera.

Directional solidification of the sintered compacts was car-
ried out in a 4 in. long, 4 in. diameter alumina crucible heated
in a vertical tube-type platinum furnace. The temperature gradient
was varied from 20-40°C/cm by changing the tapping of the re-
sistance wire of the furnace, and the temperature was monitored by
using three thermocouples placed at three different places. After
heating the material to about 30-40°C above its melting tempera-
ture, the alumina crucible was withdrawn from the furnace at a
constant rate of from 1-40 pm/sec. The longitudinal and trans-
verse sections on the resultant, elongated samples were then ex-

amined on the solidified specimens.

New Experimental Results

The following observations have been made on these melt-
grown, crystalline niobate samples prepared at 40 pm/sec:
1. The spirals consist of linear oriented segments,
typically 150 um or shorter.
2. Many spirals have only 1, 1%, 2, 3, ..., outer

linear segments (see Fig. 1 at a).

3. The linear segments have been identified by elec-

tron microprobing as proeutectic crystals.
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The spacings (Figs. 1-3 at b) between adjacent
linear segments of the spirals are as wide as, or
wider than, the thickness of the proeutectic cry-
stals, i.e., tens or huadreds of um rather than
angstroms thick. ‘
By probing, the materials in these spacings are
identified as being of eutectic composition

(Figs. 1-3 at b).

Both single spiral (Fig. 2, top) and paired spirals
(Fig. 3, right) occur.

Clockwise and counterclockwise paired spirals exist,
even only 70 pm apart on the same sample cross
section (Fig. 3 at ¢).

The two adjacent, clockwise and counterclockwise
spirals (Fig. 3) share the same single crystalline,
outermost linear segment (Fig. 3 at d).

During spiral formation, there was a lopgitudinal
temperature gradient of about 40°C/cm perpendicu-
lar to the axis of growth spirals.

The growth directions of the linear segments were
often independent of the externally applied, longi-

tudinal temperature gradient (see Figs. 2-3 at a).



e

BN NI IR TN R i

EETWRCHE St N S [ AN -

.
S R I P SR B i A AN g T

e PR 0% v b

-

e gty e LB

s .

oo s e e

Discussion

Many spirals are near ideal helices, each containing a single
smooth spiraling segment with no discontinuities in the change of
its slope (Ref. 9). Many other spirals are segmented (Refs. 8-9),
similar to those noted in Observation 1. These segments apparently
follow the preferred crystallographic orientations which probably
coincide with the directions of fastest crystal growth or high
thermal conductivities.

The spirals with only 1, 1%, 2, 3, ..., outer linear seg-
ments (Fig. 1) appear to represent different stages of growth,
from the outermost points toward the center or core regions. The
bypothesis of complete spiral formation first with subsequent core
dissolution or homogenization .is untenable, because the core would
be solid, according tc che classical theory, and, hence, have
limited material diffusivities. Solid diffusion coefficients at
near the melting point or crystal growth temperatures is typically
oﬁly about 10.8 cm2/sec, and the time to grow a 100 um seg-

ment .at a rate of 40 um/sec 1s only 2.5 seconds. The diffusion

.

length in this particuvlar case is of the order of JDt - Jio's X 2.,5=

1.6um, that is two orders of magnitude smaller than the segmental

length.
The fact that linear segments are proeutectic crystals (Obs. 3)

is in accordance with the relevant phase diagram (Ref. 12).
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Observation 4, i.e., the wide spacings between adjacent seg-
ments, is in sharp contrast with prediction or implication cf the
conventional theory.

Observation 5, i.e., the materials in the spacing between
spiral segments are eutectics, indicates that the linear segments
froze first, protruding into the melt (scmewhat like dendrites)
and rejecting high-solute materials ahead of the liquid-solid
interface and also on one or both sides of the protruding seg-
ments, to be subsequently frozen as eutectics.

The interesting fact that adjacent clockwise and counter-
clockwise spirals share the same single crystalline, cutermost
linear segment (Obs. 8) also appears to defy satisfactory explana-
tions according to the classical, core-first BCF growth model.
The statistical probability is almost nil for two independent,
separated nuclei in the melt to form the twc segmented, clockwise
and counterclockwise spirals that grew to reach perlect alignment
and matching widths in the last and common, outermost linear seg-

ment . We would have to hypothesize that one nucleus must be trans-

"mitting complicated signals on growth characteristics, such as

growth rates, growth directions, ... through the intervening 1l7-u 4.
This liquid is probably in a disordered state, so that at best, the
signals are transmitted through with great distortion and absorp-

tion. The other nucleus must simultaneously receive and decode the

F-7
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signal and, furtherumore, take inztantaneous, exact corrective
action to achieve perfectly matchecd gruwth conditions. Even if
we assume that somehow the two nuclei grew from opposite direc-
tions in an identically and insc:in:aneously matching manner, we
still expect the two approaching crystal segments to be separatéd
by a solute-enriched layer, due to the limited liquid diffusion
and solute pile-up in front of the growth interface. A loss of
epitaxial relations must occur, i.e., two crystalline segments
must form, one on each side of a distinct, solute-rich laye

Such was not observed.

It is also interesting to note that the external or primary
temperature gradient is transverse to the axis of the spiral (Obs. 9),
rather than longitudinal thereto, in disagreement with the normal,
spiral growth predictions. Some segments must, therefore grow in
the direction of this primary temperature gradient (at fast growth
rates), some must grow against the temperature gradient (at 40°C/cm,
or over 0.6°C over 150 um), and some others must grow essentially

isothermally.

A New Mechanism
It is, therefore, proposed that at least on the samples re-
ported here, the spirals were formed from outside toward the center

or core region. Such a mechanism has been suggested (Refs. 13-14).
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All the above observations and discussions, including the
formation of eutectics between the spiral spacings, can now be
readily explained by the solidification theory (Ref. 15). Even
the growth against a temperature of over 0.6°C can be ascrib;d
to solute pile-up in front of the liquid-solid interface, and the
resultant constitutional supercooling phenomenon (Ref. 16).

The two adjacent clockwise and counterclockwise spirals, such
as those in Fig. 3, most likely shared the same nucleus, which was
probably located in the middle of the outermost segment and grew
in opposite directions to form the common outermost linear segment
for the two spirals.

According to our core-last spiral growth mechanism, the com~
bined effect of temperature and solute concentration fields makes
it less likely for nucleation to occur at the center or core re-
gions. Only under a special combination of phase diagram, mate-
rial thermophysical properties, and external temperature fields
(such as when the material in the core region has the highest melt-
ing point) can core nucleation become possible.

When nucleation does occur At an outer corner, the growth ap-
pears to follow the outline of some kind of local concentration
cell, often only slightly influenced by the externally applied tem=-
perature gradient (Figs. 2-3). This can be seen from the fact that

in our crystal growth experiment, the external temperature gradient
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was 40°C/cm, or a maximum of 0.6°C over the 150 pm outer seg-
ments. According to the iiquidus of the SrNb?_O6 - BaNb206 pseu-
dobinary phase diagram (Ref. 12), such a temperature difference
correspcnds to a change in liquid-solute concentration of only
about 0.3 mole percent. On the other hand, the concentration ef-
fect from solute segregation and pile-up ahead of the solid-liquid
interface is, according to the separation between liquidus and
solidus on the same phase diagram, over 30 times greater.

The proeutectic crystals or linear segments, thus, appear to
grow mainly along the isoconcencration lines generally following
the cell boundaries, with rejection of solute (segregation coef-
ficient being less than unity here) both longitudinally ahead of
the grown segments and laterally at least toward the center of the
spirals. We could thus predict that for these core-last grown
spirals, the solute concentration of spiral segmrnts should gen-

erally increase along the segments toward the last-freezing core

region. Notice, also, that the differently oriented segments should

bave different growth rates and concentration profiles. The centers

of the spirals must, in particular, have much higher solute concen-
trations approaching the eutectics.
Hence, at least in the BSN samples, the spiral growth seems

to start from the outside inward.

F-10
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Fig. 1

Fig. 2

Fig. 3

Captions

Broken Spiral Segments on Ba,Sr NbjgO39 Melt-Grown
Sample Formed at 40 pm/sec under Temperature
Gradient of 40°C/cm. Magnification 220X

Segmented Spirals on Ba4Sr NbjgO3g9 Melt-Grown at
40 pm/sec under Temperature Gradient of 40°C/cm.
Magnification 220X

Segmented Paired Spiral on Ba,gSr Nbjg03g9 Melt-Grown

at 40 pm/sec under Temperature Gradient of 40°C/cm.

Magnification 220X
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APPENDIX G
STEADY-STATE SOLIDIFICAI'lON IN THE Ni-Sax SYSTEM

INTRODUCTION

It is well known that solute redistributes as an alloy solidifies from its molten
state. Pfann (1962) and several other authors have expressed the instantaneous solute

concentration ¢ as a function of the fraction solidified, g, i.e.,
c-kc -5, ‘ (1)

where Co is the initial concentration of solute in the melt, k = cs/c is the segregation

1
constant, and ¢ and c‘e are the solute concentrations in the solid and liquid, recspectively.
s

Equation (1) is based on the following assumptions:
1. Diffusion in the solid is negligible.
2. The mixing in the liquid is complete.
3. k is constant.

Frenkel (1946) pointed out that assumption (2) is hardly true because the diffusion
coefficient is too small to assume completely mixing. In addition to assumptions one
and three, Chalmers (1964) assumcd that convection in the liguid is negligible and ihai
solute is transported by diffusion instead of being completely mixed. Then the con-
centration of solute in the liquid, cl, is, under steady state conditions, a function of

distance from the solid-liquid interface, x:

R,
1-k D
cl = CO[ + K e ] (2)

where D is the diffusion coefficient in the liquid and R is the constant growth rate.

G-1
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There is always an equilibrium temperature which corresponds to a certain
solute concentration in the liquid phase. Chalmers (1964) pointed out that supercooling
can occur if the temperature gradient, G, is controlled in such a way that the actual
temperature in the liquid phase is lower than the equilibrium temperature. Figure G-1
shows that no supercooling can occur if G is larger than the critical temperature

gradien. of supercooling G If G is smalier than Gc’ however, a distance of super-

c'
cooling, x, exists.

The constant value of k in Eq (1) and (2) is only a simplified assumption, since
we know that the solidus and liquidus curves in most phase diagrams are not linear.
In this appendix we will inves:igate the errors involved in calculating the critical tem-
perature gradient Gc and distance of supercooling x when a constant k is assumed. For
convenience in comparison, three models are assumed. The first is a linear model in
which both the solidus and liquidus curves are linear functions of the melt temperature.
This model corresponds iv consiant k. Both the solidus and liquidus curves should, of
course, pass through the point representing the temperature of solid-liquid equilibrium
of the pure solvent, and the slopes should be obtained by a least-square fitting of the
experimental data over the entire solidification range. The second model is a pseudo-
linear model. This model is the same as the first one, except that the slopes of solidus
and liquidus curves are the slopes, or tangerts, at the melting temperature of pure
solvent. The third model is a quadratic model for both the solidus ~.nd liquidus curves,
with the same terminal restrictions that they precisely pass through the solid-liquid
equilibrium points for the pure solvent and eutectic. The shapes of the curves are also

determined by least-square fitting of the experimental data.
THEORETICAL BACKGROUND

To express the liquidus and solidus curves, C. and Cs, in terms of the melt

1
temperature, we choose TE’ the equilibrium tempercture of pure solvent, as the origin
of the coordinate, so that the constant terms in both liquidus and solidus drop out
automatically. Then the relation between the new coordinate or modified temperature

T and old coordinate T' is T = TE -T'.
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DISTANCE OF SUPERCOOLING

(R/Dlg > (R/D)4 > (R/D)3 > (R/D), >(R/D),

Fig. G-1 The Effect of R/D on x
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For the linear model, the liquidus curve and the solidus curves can be expressed

as

and

For the quadratic model:

and

which is a function of the temperature, T.

concentrations of solute cs and ¢, are small, then the higher-degree terms of tem-

C1:A1T
CS=B1T
C B
k . 1 = constant
1 C1 A1
C =A._ T+A T2
12 22
C =B..T+B T2
- 712 22
C -
3 Cl A12+A22T

1

(3)

(4)

()

(6)

(8)

If the temperature T is small, i.e., il the

perature in both C2 and Cs are negligible, we thus ohtain a new constant for k, i.e.,

which is the pseudo-linear model.

Gc can be found by the chain rule relationship:

9)
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Both \Cz I\x and Cz Ir\T can be found from Eq (2), (3), and (6). Thus:

RT
» _— 0 -l
e For the linear case, GCl 5 (1 kl) (10)
RTO
¢ For the pseudo-linear case, Gc2 =5 (1-k2) (11)
Rt A, +A_ T
. , o 12 %227 ,
e For the quadratic case, GC3 =5 (1—k3)A oA T (12)
12 22 o
BT, Aoty Byg 2409810
~ T M)A A B T
12( 12 712

where T,is the equilibrium temperature of solid-liquid interface expressed in the new

coordinate system. The real temperature is T' = TE - To.
The distancc of supercooling can be found by introducing the equation for the actual

temperature in the liquid phase, after transformation into the new coordinate system:

T=T -Gx (13)
o
Thus:
s From Eq (3), Ct = A1 (To-Gx) 14)
e From Eq (6), CL = A12(T0-Gx) (15)
_ 2
e From Eq (6), C.t = A12(To Gx) + A22(To Gx) (16)
G-5
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Then x can be found by equating Eq (14), (15), and (16) to Eq (2) for any model, and any
given R/D and To'

PRI TSR

i COMPUTATION SCHEME

To find the values of Al’ Bl’ A12. A22. 812’ and B22. least-square comput;r \
. N _ I g
programs were used which minimized the total errory =2 1—A12 Cl - A22 Cz ] .

Since we want both end points to be precise, we solve the following simultaneous

equations for A__ and A__:

12 22
2 2 HA
A_.:L=-2 1"‘\1251‘—"%22—0l ELJ*ELFX&Z' =0
12 2 2 2 p T2
and
A, Tu 2
1= C12 + A22 %‘- 17)

tu u

where Czu ana Tu are the liquid concentration and temperature at the eutectic point

and B_ _, B2 and

respectively. The same procedure can be used to compute Al’ Bl' 12 2

the required data sets cbtained from the phase diagrams,.

To find k's and Ge's. Once we have obtained those coefficients, we can compute

: k's and Ge's from Eq (5) and (8), and (10), (11), and (12), respectively.

To compute the distance of supercooling, x. From equations (7), (16), and (2),
we solve for x, for the quadratic case, as follows:
‘ R

, 1-x D *

. 2 ) 2 L0 _
; AIZ(TO-GX) + AZZ(TO-Gx) - (Blzl‘o+822To) (1 ko e ) =0 (18)

Since the above equation is nonlinear, Newtons method can be used to find x by

minimizing y, where

Py —v— == - —— —
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5 2 2 1.ko D *

- = - - - (19)
y = Alz(To Gx) + A22(To Gx) (812’1‘0+B22'I‘0 ) (1+ ko e )

o

;;*. For the linear case:

N _R

e Sl 1k D X

g' e y = AI(TO-GX) - B].TO 1+—‘—ko e (20)
Pt

- and for the pseudo-linear case:

¥ % : By

H 1-—k0 D

% ! i y = A (T -Gx) - B, T (1+— e ) (21)
i ¢ 0

g 4 o

where ko is the segregation coefficient at a given solid-liquid equilibrium temperature.

-y

COMPUTATION RESULT

A Ni-Sn System, in which both the solidus and liquidus cur . are parabolas, was
; chosen for the study. Sn is the solute and Ni is the solvent in this system. Ten equili-

brium data points, as tabulated below, were obtained from the phase equilibrium diagram

wtd szt o

given by Hansen (Ref. 4):

-
.y

TABLE G-1 THE Ni-Sn PHASE DIAGRAM

.
s e n gh S PRE TSR b B SO

o

ran e

T, K C C
8 2

273.1 0.0 0.0

283.1 0.2000E 01 0.2000E 01
298.1 0.8500E 00 0.4000E 01
323.1 0.1800E 01 0.6900E 01
373.1 0.3700E 01 0.1220E 02
423.1 G.5900E 01 0.1700E 02
473.1 0.8600E 01 0.2150E 02
523.1 0.1200E 02 0.2600E 02
573.1 0.1700E 02 0.3000E 02
604.1 0.2000E 02 0.3230E 02

G-17
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From these data, the required coefficients can be obtained by a least-square method:

Al2 A22 B12 B22 Al £} 1

0.1495 --1.568x10-2 0.02337 1.120x10-2 0.1157 0.03364

The segregation constants k's for the three cifferent cases, i.e., k(1), k(2), and
k(8) corresponding to the linear, pseudo-linear, anc¢ quadratic models, respectively,

were computed for a given T and are listed in Table G-2.

TABLE G-2 VARIATION OF THE SEGREGATION COEFFICIENTS
WITH TEMPERATURE FOR THE Ni-Sn SYSTEM

T, K KQ) K(2) K(3)

1728 0.2908E 00 0.1563E 00 0.1563E 00
1718 0.2908E 00 0.1563E 00 0.1655E 00
1703 0.2908E 00 0.1563E 00 0.1797E 00
1678 0.2908E 00 9.1563E 00 0.2045E 00
1628 0.2908E 00 0.1563E 00 0.2583E 00
1578 0.2908E 00 0.1563E 06 0.3185E 00
1528 0.2908E 00 0.1563E 00 0.3873E 00
1478 0.2908E 00 0.1563E 00 0.4656E 00
1428 0.2908E 00 0.1563E 00 0.5559E 00
1397 0.2908E 00 0.1563E 00 0.6192E 00

The deviations of segregation constant k for the linear models from tha* of the

quadratic model are given in Table G-3.

TABLE G-3 DEVIATIONS OF THE SEGREGATION COEFFICIENTS
IN THE Ni-Sn SYSTEM

T, K (K(L)-K(3))/K(3) (K(2)-K(3))/K(3)
273.1 0.8604E 00 0.0

283.1 0.75¢7E 00 -0.5574E =01
298.1 0.6178E 00 -0.1304E 00
323.1 0.4221E 00 -0.2356E 00
373.1 0.1258E 00 -0.3949E 00
423.1 -6.8790E -01 -0.5097E 00
473.1 -0.2493E 00 -0.5965E 00
523.1 -0,3755E 00 -0.6643E 00
573.1 ~0.4770E 00 -0.7189E 00
604.1 =0,5304E 00 -0, 7476E 00

The critical temperature gradients, Gc. were computed by Eqg (10), (11),
and (12) for any given R/D and T and are listed in Table G-4. Computed distances
of supercooling, x, are given in Table 5.
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TABLE G-4¢ COMPUTED CRITICAL TEMPERATURE GRADIENTS
IN THE Ni-S8a SYSTEM FOR THE THREE MODELS

[

et

L

L \
[N |

T. K R/D Gc(l) Gc(l) Geﬂ)
m.1 0.1000E A1 0.0 0.0 0.0

283.1 0.1000E 01 0.7082E 01 0.8437E 01 0.84ME 0
298.1 6.1000E 01 0.1773E 02 0.2108E 02 0.2107E o2
3.1 0.1000F 01 0.3546E 02 0.4219E 02 0.4211E o2
3n.1 0.1060E 01 0.7092E 02 0.3437E 02 0.8402E 02
423.1 V.1000E 0 0.10G4E 03 0.1266E 03 0.1296L 03
473.1 0.1000E 01 0.1418E O3 0.1687E 03 0.1668E 03
§23.1 0.1000E M 0. ATT3E 63 0.2108E ©3 0.2073E 03
573.1 0.1000E 01 0.2124E 03 0,2531E 63 0. 2464E 03
604.1 0.1000E 03 0.248E 03 0.2793E 03 0.2693E 03
20.1 0.2500F 0.0 0.0 0.0

3.1 0.2500E 0.1773E 02 0.2109E 02 0.2108E 02
208.1 0. 2500F 0.433E 02 0.5273E 02 0.5268E 02
323.1 0.2500E 0.8865E 02 0.1055E 03 0.1053F. O}
3713.1 0. 2500E 0,1773E 03 0.2109E 03 0.2100E 03
423.1 0.2500E 0.2660E 03 0.3164E 03 0.3141E a3
473.1 0. 2500 0.3G46E 03 0.4219E 03 0.4171E 03
523.1 0. 2500E 0.4433E 03 0.5273E 03 0.51852E 33
573.1 0.2500E 0.5319E 03 0.6323E 03 0.G15%E 03
604.1 0. 2500E 0,5869E 03 0.6982E 03 0.G7DE 03
273.1 0. 5000E 0.0 0.0 0.0

283.1 0.5000E 0.3546E 02 0.4219E 02 0.4217E 02
20981 0.5000E 0. NSGRE 02 0.1055E 03 0.1054E 03
323.1 0.5000E 0.1773E 03 0.2108E 03 0.2105E 03
313.1 0. 5000E 0.3546E 03 0.4219E 03 0.4201E 03
423.1 9.5000E 0.5319E 03 0.G32:E 03 0.6282E 03
173.1 0.5000E 0. 7082E 03 0.8437E 03 9.8341E 03
523.1 0.5000E 0. 48G5E 03 0.10G5E o4 0.1036E ™4
573.1 0.5000E 0.1081E O4 0.1266E o4 0.12328 ™
604.1 0. 5000E 0.1174E 04 0.13J6E 04 0. IHTE ™
273.1 0.1000E 03 0.0 0.0 0.0

2831 0.1000E 63 0.7092E 03 0.%437E 03 0.8 HE 03
28%,1 0.3000E 03 0.1703E o4 0.2108E o4 0.2107TE 04
323.1 0.1000E 03 0.3546E 04 0.4218E 04 0.4211E o
373.1 0.1000E 03 0.7092E 04 O.NI7E 04 0.8402E ™
423.1 0.1000E 03 0.10G4E 05 0.1266E 06 0.1256E 05
473.1 0.1000E 33 0.1418E 05 0.1647E 05 0.1668E 05
523.1 0.1000E 03 0.1773E 05 0.2109E 05 0.2073E 05
873.1 0.1000E 03 0.212E 06 9.2531k 05 0.2464E 05
804.1 0.1000E o° 0.235E 05 0.2793E 05 0.2693E 05

values ol R/1* ¢ To.

The di=tzr res of supereooling, X, were con

G-9
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TABLE G-8 COMPUTED DISTANCES OF SUPERCOOLING IN THE Ni-Sa SYSTEM
PFOR THE THREE MODELS (Shest 1 of 3)

v

G R/D [K~273.1 K'ﬂ’] K=298.1f K=323.1] K=373.1] K~423.1] K~473.1} K=523.1] K=573.1 { K=§0¢.1

4 ]
——

s.e el 0.0 .0 0.0 0.9 7.4519 | -0.0000 | -0.0000] 0.0000] -0.0000 | -u.0000 -
5.0 0.5 9.9 .0 2.5603 | 6.8629 ] 14.1726 | 21.2762] 0.0000] 0.0000| -0.0000 | -0.0000 ]
5.0 1.0 0.0 . T4S2] 3.4314 | 7.0883 | 14.1845 | 21.2767 | 28.3690| 35.4612} 42.5535 | 46.9507

5.0 3.5 0.0 3726 3.5456 | T.0822]14.1845] 21.2767 | 28.3690| 35.4612] 42.5535 | 46.3507 -

3.5461 | 7.0022] 14.1845 | 21.3767 ] 20.3690] 35.4612 ] 42.5535 | 46.9807
3.5461 | 7.0022] 14.1845 | 21.2767 | 28.3690] 35.4612 42.5535 | 46.9507
3.5461 ] 7.0922 | 14.1845 | 210.2767 | 24.3690| 35.4622] -2.5535 | 46.9507
3.546) | 7.0022] 14.1845 | 21.2767 | 28.3690] 35.4612 ] 42.5535 | 46.8507
3.5461 | 7.0022§ 34.1845 | 21.2767 | 24.3650) 35.4612 | 42.5535 | 46.9507
3.5461 | 7.0922 ) 34.1845 | 21.2767 | 28.369( | 35.4612 | 42.5535 | 46.9507

5.0 5.0 0.0
s.0 10.0 0.¢
5.0 .0 0.0

chies
333X FE

5.0 | 100.0 0.0
s.0 | 250.0 0.0

el el N N W]

.
e
-

- 1.0 9.1 0.0 8.0 0.0 0.0 0.0 1.2507 | 7.4519} -0.0000{ -0.0000 0, 6000
o 1.0 0.5 a.0 0.0 9.0 2.5603 | 6.8629 ] 10.5849 | 141726 | 17.72x1 | 21.2762 | 23.475)
10.9 1.6 8.0 0.0 1.2002 | 3.4%4| 7.0863 ] 160.638) | 24.)545] 17.7306 | 21.2767 | 23.4753
10.0 2.5 0.0 0.5121]1.7508 | 3.5456( 7.0022] 10.683%4 | 14.1845) 17,7306 | 21.2767 23.4753
10.0 5.0 0.0 0.G863) 1.772¢ | 3.5461 | T7.0922] 10.6384 | 14,1845 17.7306 | 21.2767 | 23.4753
10.9 10.0 0.0 0.7086) 2.7731 | 3.5461 | 7.0922 | 20.6383 | 14,1845 ] 17.7306 | 21.2767 23.4753
10.0 5.0 0.0 0.7092] 1.7731 | 3.5461 ] 7.0022 | 10.6384 04.1845] 17,7306 | 21.2767 23.4733

1.7%

1

1

10.0 50.0 0.0 0. 7092 31 | 3.5461 ) 7.0922] 10.63%4 | 14.1845 ] 17.7306 | 21.2767 23.4753
10.0 | 100.0 0.0 0.7002] 1.7731 | 3.5461 | 7.0922} 10.63%4 | 14.2045] 17.7306 | 21.2767 | 23.47533
10.0 | 250.0 0.9 0.7092| 1.7731 | 3.5461 | 7.0922 | 10.63% | 24,1845 | 17,7306 | 21.2767 23.4753 Y

d

25.0 0.1 0.0 0.0 6.0 0.0 6.0 9.0 e.0 9.0 0.0 0.0
25.0 0.5 0.9 0.0 0.0 0.0 1.4504 3.5251 ] 5.266)1] 6.%629 ] N.3NPY 9. 3004
25.0 1.0 0.0 9.0 0.0 0.7452] 2.6330) 4.1910] 5.6539f 7.oM63 | x.5090 9, 3893

.0 2.5 a.0 0.0 0.5121 | 1.3726 ] 2.8345 | 4.2552) .5.67T38] 7.0922| ~.5107 9. J90]
25.0 5.0 0.0 0.1490] 0.6863 | 1.4173] 2.8369 ] 4.2553)] 5.673s] 7.0822| «~.5107 9.390)

) o d
—

25.0] 10.0] 0.0 | e.2633) 0. 7ows | 1.0004] 2.u3e9| 4.23530 s5.67a| 7.0822{ s.5107 | 9. 30m .
25.0] 25.0] 0.0 | o.235]0.7092 | 1. 4184} 2.8365 ] 4.2353| s.6738] c.0822] s.3107 | 9 3901 )
. 25.0| 50.0f] 0.0 | o.2037)0.7092 | 14184 ] 2.n368 | 4.2553) 5.673s| 7.0822| x.5107 | s.aw@) ;
5 25.0] 100.0] 0.0 | o0.2637| 0.7082 | 1.4184] 2.8369] 1.2353| 5.6738| 7.e922| w.5107 | e 3ve1 -1
2%.0] 250.0] 0.0 | 0.2837| 0.5092 | 1.41sa | 2.8369 | 4.2553] 5.673x] i.o922| w5107 | w3901 , )
«
3 se.0] o1] o0 ]| 0.0 a.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . )
e s50.6] o5] o0 | o0 [e.0 0.0 0.0 0.2500 | 1.4904| 2.5603 | 3.5251 | 4.0n66 ] ;
. 50.0] 1.0] oo | 00 J|eo 0.0 o.nus2| 1.7626 | 2.6330] 3.4313] 4090 | disez ~&8
s0.0] 23] o0 | 09 |o.0 0.5121) 1.3726 | 21170 2.8345] 3.5456 | 4.2552 | 4.6u5e ;
= 500§ 5.0l 0.0 | o0 [o.2560] o6ue3| 1.0173( 22276 ] 2.x368| 3.5460 | 1.2553 | 4.ev5) i
3] 50.0] 10.0] 0.0 | 0.0745]0.3:31 | o.7o8¢ | 1.41u4 ] 21277 2.8369] 3.5461 | 4.2353 | 4.6851 E] :
50,0 25.0] 0.0 | oa3rsfo.ssss | 0.7092] 1.4184 ] 21277 2.nme9) 3.hae | 42853 | d.evd N 1
50.0| 50.0] 0.0 | 0.1417]0.3546 | 0.7092] 1.0184 | 2.2277] 2.8369] 5161 | 2.2553 | 4.6951
3] 50.0 | 100.0] 0.0 | 0.1418] 0.3546 | o.7082| 1.41s4 | 2.2277] 2.8368] 35462 | . 2553 | 4.e0m 3
13 50.0 | 250.0] 0.0 | o.1418] 0.3546 | 0.7082] 1.4184 | 2.2277] 2.4369] 3.5461 | 1.2553 | 1.ew51 - .
5‘;; 10.0f 01] o0 | eo |o.0 8.0 0.0 0.0 0.0 0.9 0.0 0.0 2
10.0f{ o05] o0 | o0 Jo.o 0.0 0.0 0.0 0.0 0.0 0.250 | o.6580 ]
¥ 1006 1.6} oo | o0 Jo.0 0.0 0.0 0.1251 | 0.7452} 1.2n02 ] 1.7626 | 2.m433 3
s 1000 25| o0 | 00 Jo.0 0.0 0.5121 | 0.9696 | 1.3726 | I.750x | 2.1170 | 2,340 D
X 10.0f 50| o0 | e Jo.o 0.2560] o.une3 ] 1.e8851 1.4173] 17T ] 20216 | 2.
100.0} 10.0f 0.0 | o0 [o.1200 | 0.3131 ] o.7086 ]| 1,063 | 34| 1.7im | 2277 | 2w !
10 “| 28.0] 0.0 | 0.0512]0.1751 | 0.3546 | o.7002 | 1.063x] r41s4| 1.77m1 ] 21277 | 2.3475 ;
100.0} 50.0] c.0 | o.088610.1773 | 0.3546| 0.7082 ] 1.063% | 1.aas4f 17081 ] 21277 | 2.mms )
100.0 } 100.0] 0.0 | 0.070970.1773 | 0.3546 | 0.7082] 1.063x | 1.3vi] 1.7mm | 20277 | 27
; 100.0] 250.0} 0.0 ] 0.0708]0.1773 | 0.%546 ] o.7092] 1.063s | Lt ] 1.ivm ] 23277 ] 2.mvs
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TABLE G- COMPUTED DISTANCES OF SUPERCOOLING IN THE Ni-Sa SYSTEM
FOR THE THREE MODELS (Sheet 2 of 3)

G R/D JK=273.1] K=283.1] K=293.1] K=323.1] K=373.1 |K=423.1 | K=473.1] K=523.1] K=573.1 | K=60¢.1
5.0 0.1 0.0 0.9 0.0 0.0 11,3865 22.4948 | 32.4305 | 41.5216 | 50.2908 | 55.6391
5.0 0.5 0.0 0.0 3.4770 [ 8.3043 16.8704 | 23,3110 | 33. 7481 | 42.1852 | 50.6222 | 55.8532
5.0 1.0 0.0 1.15867 | 4.1522 | 8.4352 16.8741 | 25.3111 | 33. 7481 | 42.1852 | 50.6222 | 55.8532
5.0 2.8 0.0 1.660% | +.2184 | 8.4370 16.8741 | 25.3111 | 33. 7481 | 42.1852 | 50.6222 | 55.8532
5.0 5.0 9.0 1.8870 | 4.2185 | 8.4370 16.8741 | 25.3111 | 33. 7481 | 42,1852 | 50.6222 | 55.8832
5.0] 10.0] 0.0 1.687¢ | 4.2185 | 8.4370 16.8741 | 25.3111 ] 33. 7481 | 42,1852 | 50.6222 | 55.8532
5.0f 25.0 0.0 1.6874 | 4.2185 [ 8.4370 16.8741 ] 25.3111 | 33. 7481 | 42,1852 | 50.6222 | 55.8532
5.6] 50.0 0.0 1.6874 | 4.2185 ] 8.4370 16.8741 | 25,3111 | 33. 7481 | 42,1852 | 50.6222 | 55.8532
5.0] 100.0 0.0 1.687¢4 | 4. 285 | s.4370 16.8741 | 25.3111 | 33. 7481 | 42,1852 | 50.6222 | 55. 8532
5.0] 250.0 0.0 1.6874 § 4.2185 [ 4.4370 16.8741 | 25.3111 § 33. 7481 } 42.1832 | 50.6222 1 55,8532
10.0 0.1 0.0 0.0 0.0 v.0 0.0 4.9100 {11.5665 | 17.3847 | 22,6948 | 25.x133
10.0 0.5 9.0 0.0 0.2269 ] 3.4770 8.3043 ] 12,6327 ] 16,8704 | 21.0920 | 25.3110 | 27. 9266
10.0 1.0 0.0 0.0 1.7385 | $.1522 8.4352 | 12.6555 | 16. 5741 | 21,0926 | 25.3111 | 27.9266
10.0 2.5 0.0 0.6354 | 2.088) | 4.2154 8.4370 1 12,6556 | 16,8741 | 21.092¢ | 25.3111 | 27.9266
10.0 5.0 0.0 0.8304 | 2.1092 | 4.2185 8.4370 | 12,6556 | 16,8741 | 21.0926 | 25.311) | 27.9266
10.0} 10.0 0.9 0.1435 | 2.1093 | 4.2185 84370 | 12.6356 | 16,8741 | 21,0926 | 25,3110 | 27.9266
10.0] 25.0 0.0 0.8437 | 2.1093 | 4.2185 K.4370 § 12.6356 | 16,5741 { 21,0826 | 25.3111 § 27,9266
10.0} 30.0 0.0 0.8437 | 2.1083 | 4.2185 8.4370 | 12.6556 [ 16.5741 | 21,092 | 25.3111 | 27. 9266
10.0}] 100.9 0.0 0.8437 | 2.1093 | 4.2185 8.4370 | 12.6556 | 16.8741 ] 21.0926 | 25.3111 | 27.9266
10.0{ 250.0 0.0 0.84437 | 2.1093 | +.2185 8.4370 ] 12,6556 J16.8741 [ 21.092G { 25.3111 | 27,9266
25.0 0.1 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.4937 | 2.25%
25.0 0.5 0.0 0.0 0.0 0.0 2.3133 | 4.5390 ) 6.4v61 § N 3043 110.0582 | 12.127x
25.0 1.0 0.0 0.0 0.0 1.1567 3.2430] 5.0291 ] G. 7417 N.4352 10,1240 |11.1705
25.0 2.5 0.0 0.0 0.6954 | 1.6609 33741} 3.0622 | G.749G | N.4370 110.1244 13,1706
2.0 5.0 0.0 0.2314 | 0.5304 | 1.6870 3.3748 | 5.0622 | G. 7496 | S.4370 [10.1244 [11.2706
25.0] 10.0 0.0 0.3243 | 0.%435 [1.6874 3.3748 | 5.0622 1 6.7496 | S.4370 [ 10,1244 [1].250%
25.0, 25.0 0.0 0.3374 | 0.8437 1.687TH 3.3748 ] 5.0622 | G.7496 ] ».4370 [10.1244 {11,108
25.0] 50.0 0.0 0.3375 | 0.8437 j1.6874 3.3748 | 5.0622 ] 6.74965 | x.4370 {10.1244 J11.0706
25.0| 100.0 0.0 0.3373 | 0.8437 | 1.6874 337148 | 5.0622 | 6.7496 ] N.4370 10,1244 111.1706
%5.0] 250.0 0.0 0.3375 | 0.8437 | 1.6874 3,378 | 5.0622 ] 6.7496 | ~. 4370 10,1244 |11.0706
50.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 ¢.0
50.0 8.5 0.9 9.0 9.0 0.0 0.0 0.9822 | 2.3133 { 3.1770 | 4.5390 | 5.1627
50.0 1.0 0.0 0.0 0.0 0.0 1.1587 | 2.2695 | 3.2430 ] 1.1522 | 5.020 | 5.5639
50,9 2.5 0.0 0.0 0.0454 | 0.6954 1.6609 | 2.5265 | 3.3741 | 4.2184 | 5.0622 | 5.5%338
50.0 5.0 0.0 0.0 0.3H77 { 0.8304 1.6%70 § 2.5311 ] 3.3748 | 4.2I55 | 5.0622 | 3.5853
50.0 10.0 0.0 0.1157 | 0.4152 | 0.8435 1.6874 | 2.5313 | 3.3743 | 4.2185 | 5.0622 | 5.5853
50,0 25.0 0.0 0.1661 }0.4218 | 0,8437 1.6874 | 2.5311 ] 3.3%4n | 4.21805 [ 5.0622 | 5.5853
50.0 50.0 0.0 0.1687 | 0.4219 | 0,437 1.6874 | 2.5311 | 3.374% ] 4.2155 | 5.0622 | 5.5853
50.0 | 100.0 0.0 0.1687 1 0.4219 ] 0,8437 1.6874 | 2.56313 ] 3.3748 | 4.21x5 | 5.0622 | 3.5853
50.0 ] 250.0 0.0 0.1687 | 0.4219 | 0.8437 1.6874 | 2.5311 | 3.3%14% | 4.2I55 | 5.0622 | 5.5433
100.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100.0 0.5 0.9 .0 0.0 0.0 2.0 0.0 0.0 0.2269 | o0.9822 | 1.41%0
100.0 1.0] 0.0 0.0 0.0 0.0 0.0 0.4911 | 1.1567 | 1.7355] 2.2695 | 2.5%13
100.0 2.5 0.0 0.0 0.0 0. 0454 0.6934 | 1.2030 | 1.6609 | 2.0081 | 2.5265 { 2. 7901
100.0 5.0 0.0 0.0 0.0227 | 0.3477 0.8304 | 1.2633 § 1.6570 § 2.1002) 2.5313 | 2.7927
100.0 10.0 0.0 0.0 0.1739  0.4152 0.%435 | 1.2656 | 1.6874 | 2.1003] 2.5311 | 2. 7927
100.0 25.0F 0.0 0.0695 | 0.2088 ] 0,218 0.8437 | 1.2656 | 1.6574 | 2.1088] 2.5311 } 2, 7927
100.0 50.0 0.0 0.0530 ] 0.2100 | 0.4219 0.8%437 ] 1.2656 | 1.6874 | 2.1098 | 2.531) | 2.7%927
100.0 | 100.0 0.0 0.0844 §0.2109 §0.4219 O. 8437 | 1.2656 | 1.0874 | 2.1093 § 2.5311 | 2,7w27
100.0 | 2650.0] 0.0 0.0844 | 0.2109 | 0.4219 0.84437 | 1.2656 § 1.6874 | 2,2083 ] 2.5M1 | 2. 7027
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TABLE G-§ COMPUTED DISTANCES OF SU}  RCOOLING IN THE Ni-5n SYSTEM
FOR THE “HREE MODELS (Sheet 3 of J)

G R/D  }K=273.1] K=283.1] K=208.1] K=323.1] K=373.1] K=423.1 | K=473.1 | K=523.1 [K=573.1 | K=604.1
5.0 0.1 0.0 }o.0 0.0 0.0 0.0000] 0.0000] 0.0000] -0.0000] 0.0000] ~-0.0000
5.0 0.5 0.0 0.0 3.3706 7.8937 -0,0000 | -0.0000 0.0000} 0.0000] 0.0000]| 0.0C00
5.0 1.0 0.0 | 1.1408 | 4.0506 | B.0400 |15.2583 | -0.0711 ] -0.0000{ -0.0000] -0, 0000 | -0, 0000
5.0 2.5 0.0 | 1.6447 | 4.1207 | 8.0425 | 15.2583 | 21.5681 [ 26.8498) 30.9128} 33.4422( 34.0065
5.0 5.0 0.0 1.6715 4.1208 8.0425 15.2583 | 21.5681 | 26.8498] 30.9128} 33.4422] 34. 0065
5.0 10.0 0.0 1.6719 4.1208 8. 0425 15.2088 | 2h.06580 | 26.5498] 30.91251 33.4422| 34. 0065
5.0 25.0 0.0 11.6719 | 4.1208 | 8.0425 115.2583 )] 21.5681 ) 26.3498] 10.91281 33, 4422] 34,0065
5.0 50.0 6.0 1.6719 4.1208 8.0425 15.2583 | 21.5681 | 25.04958 | 30.9128| 33.4422| 34.0065
5.0] 100.0 6.0 11,6719 | 4.1208 ] 5.0425 ]15.2583 ] 21.5681 ] 26.8498 ) 30.912n) 33,4422} 31.0065
5.0] 250.0 0.0 1.6719 4.1208 R.0425 15,2583 { 21,3651 | 26.8495| 30.9128 ] 33,4422} 3i.0065
10.0 0.1 0.0 0.0 0.0 0.0 0.0 3.6004 | -0.0000) -0,0000] 0,0030] -0. 0000
10.0 0.5 0.0 0.0 0. 2020 3.261s T.4613 | -0.0000] -0.0000] -0, 0000 -0,0000] -0, 9000
10.0 1.0 0.9 V.0 1.6853 3.9468 T.6257 1 10.7838 ] 13,4239 15,4564 vreerer] cosanen
10.0 2.5 9.0 0.6869 2.0484 4.0211 7.6292 { 10. T840 | 1342491 15456+ | 16,7211 17,0033
10.0 3.0 0.0 0.822¢ 2. 0604 4.0212 7.6292 1 10.7840] 13.42491 ¥5.4364) 16,7211 17.0033
10.0 10.0 0.4 0.8357 2. 0604 4.0212 7.6292 § 10.7%40] 13.4249{ 15,4364} 16.7211{ 17. 0033
10,0 25.0 0.0 0.8359 2. 0604 4.0212 7.6292 | 10.7%40] 13.4249] 15,4364 ] 26,7210 17.0033
10.0 50.0 0.0 0,.8359 2. 0604 4.0212 7.6292 | 10.7940] 13.4249] 15.4564] 26,7211 17.0033
10.0}] 100.0 0.0 0, 83359 2.0604 4.0212 7.6292 | 10.78.0} 13,4249 15,4364 16,7211 ] 17.0033
10.0| 250.0 0.0 J. 8359 2. 0604 4.0212 7.6292 1 10.7540] 12.4249¢ 15,4564 ] 16,7211 | 17,0033
25.90 0.1 0.6 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.5567
25.0 0.5 0.0 0.0 0.0 0.0 1.9537 3.7130 3.99621 5.9257| G 4897 6.6G1=4
25.0 1.9 0.0 0.0 0.0 1.0762 2.8067 4.2602 5.3486 [ 6.17231 6.6521 G.7957
25.0 2.3 0.0 0.0 0.4741 1.5787 3.0503 4.3135 3.3699 | 6.1826) 6.6880) 6.8M%
2.0 5.0 0.0 0,22x2 0.5101 1.u0n0 30519 4.3136 S.37u0] 6.1826] e.unnd ) G803
25.0 n0 0.0 | 0.3210 | 0.%240 | 1.GO85 3.0507] 4.3136] 5.3700] 6.1826] 6.68%4] 6.8013
25.0 25.0 0.0 0.3343 | 0.5242 | 1.6083 3.0517] 4.3136] 3.3700) 6.1826] 6.68%d 6.8013
23.0 30.0 0.0 0.3344 Q.8242 1.6083 3.0517 4.3136 5.3700) G.In26{ G.GN~4} G.n01I3
25.0] 100.0 0.0 | 0.3344 | 0.8242 | 1.6043 3.0517] 4.3'367 3.3700] 6.1%26] 6G.6854) 60013
25.0] 250.0 0.0 0.334+4 0.5242 1.6085 3.0517 4.3136 3.3700[ G,1526] 6.6584) 6.»013
30,0 0.1 0.0 ] o0 0.0 0.0 0.n 0.0 0.0 0.0 0.0 0.0
50,0 0.5 0.9 0.0 0.0 no 0. 9, 7201 1.6110] 2,2392) 2.6257§ 2.730
30.0 1.0 0.0 0.0 0.0 0.0 Q. 1.8565 2, 4951 2.9629] 3.2449] 3.3092
50.9 2.5 0.0 0.0 0.0404 0.6524 1. 2.1489 2.6822F 3.0902] 3.343G{ 3.400
50.0 5.0 0.0 |} 0.0 0.3371 | 0.7 1.52., 215681 2,6830) 3.0913] 3.3442] 3.4007
30.0 0.0 0.0 0.1141 0.4051 0.1040 1.5258 2.1568 2.6%50 1 309131 .32 3.4007
30.3 23.0 .0 | 0.1645 | 0.4120 | 0.8043 1.5258 | 2.1365 | 2.6530) 3.0913} 3.3442{ 3.4007
50.0 50.9 0.0 0.1672 0.4121 0.5043 1.525% 2. 156y 2,68301 3.0013] 3.3442] 3.4007
50,0} 100.0 0.0 0.1672 0,.43121 0.8043 1.525% 2.1568 2.65501 3.09131 3.3442] 3.40a7
50.0§ 250.0 0,0 0,1672 0. 4121 0. 8843 1.5258 2, 1568 2.68501 3.0913] 3.3442] 3.4007
100.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 9.0
100.0 0.6 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0764 ] 0.4M% | 0,5314
100.0 1.0 0.0 0.0 0.0 0.0 0.0 0, 3601 0. 5055 111961 1.3129{ 1,364
100.0 2.5 0.0 | 0.0 0.0 0.0378 0.6071 1.0002] 1.29%6 ] 1.517x| 1.6537{ ).6M17
100.0 5.0 0.0 | ¢.0 0.0202 } 0.3252 0. 1461 1.o740( 1.3411 ) 1.5431 1.671%] 1.7001
100.0 10,0 0.0 0,0 0.1645 ] 0.3947 0.7626 | 3.0784{ 1.34251 1.345610 1.6721] 1.7003
100.0 25.0 0.0 | 0.0687 | 0,2048 [ 0.4021 0,7620 1 1.07x4{ 1.3425{§ 1.3456) 1.6921] 1.7003
100.0 50.0 0.0 | 0.0822 | 0.2060 | 0.4021 0.7620 | 1.0784] 1.3425 ) 1.5456) 1.6721) 1.7003
100.0} 1000 0.0 | 0,0836 ] C.2060 ] 0.4021 0.7629 ) 1.07s4] 1.3425]) 1.3486] 1.6720} 1.7003
100,0} 250.0 0.0 {0.0038 | 0. 2060 0. 407 0.7629 1 1.0784[ 1.3425] 1.5456] 1.67211 1.7003
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The deviations of critical temperature gradients for the linear model, from the
quadratic model for R/D = 100, are listed in Table G-6.

TABLE G-6 DEVIATIONS OF THE CRITICAL TEMPERATURE

e B v S o B e Y |

GRADIENTS IN THE Ni-Sn SYSTEM

T, K GC(1)/GC(3)-1 GC(2)/GC(3)-1
273.1 0.0 0.0
283.1 -0.1591E 00 0. 3376E-03
208.1 -0.1587E 00 0.8688E-03
3238.1 -0.1578E 00 0.1842E-02
373.1 -0.1559E 00 0.4183E-02
{, 423.1 -0.1533E 00 0. 7259E-02
J 473.1 -0.1497E 00 0.1148E-01
523.1 -0.1446E 00 0.1762E-01
P 573.1 -0.1364E 00 0. 2738E-01
a 604.1 -0.1283E 00 0. 3699E-01

The deviations of the distances of supercooling for the linear models from the
quadratic model are given in Tables G-7 and G-8.
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TABLE G-7 DEVIATIONS OF THE DISTANCES OF THE SUPERCOOLING FOR MODEL 1
FROM THOSE OF MODEL 3 (x, -x.)/x, IN THE Ni-Sa SYSTEM
k.
. .'I
. G R/D | K=283.1] K=298.1 | K=323.1] K=373.1] K=423.1 | K~473.1| K=523.1] K=573.1] K=604.1
R 10.0 o.05] o.0 0.0 0.0 0.0 0.0 0.0 -1.000 | -0.384 | o0.240
10.0 010 0.0 0.0 0.0 0.0 -0.653 | -0.075 | 0.143 | 0.343 | 0.496
10.0 o0.50 | o.0 -1.000 {-0.215 | -0.080 | -0.014 | 0.057 | 0.147 | o0.273 | o.38
10.0 .00} o.0 -0,240 | -0.131 | -0.0m | -0.004 | o0.087 | 0147 | o0.272 | o.381
10.0 2.80 | -0.255 | -0.145 | -c.118 | -0.070 | -0.004 | 0.057 | 0.147 | 0.272 | o0.381
10,0 5.00 | -0.165 | -0.140 | -0.118 | -0.070 { -0.004 | 0.057 | 0.147 | o0.272 | o.381
A 10.0 10.00 | -0.152 | -0.139 | -0.128 | -0.070 | -0.014 | 0.057 | o0.147 | o0.272 | o0.381
10.0 26.00 | -0.152 | -0.139 | -0.118 | -0.070 | ~0.014 | 0,057 | 0147 | o0.272 ] o.331
1\ 10.0 50.00 | -0.352 | -0.139 | -0.138 | -0.070 | -0.014 | o0.057 | 0.247 | o0.272 ] o.3m
R N 10.0 | 100.00 | -0.152 | -0.13% | -0.118 | -0.070 | -0.024 | 0.057 | 0.147 | 0.272 | o0.381
E
o 25.0 0.05 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
) 25.0 0.10] o.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.000
L 25.0 0.50 | 0.0 0.0 0.0 -0.249 | -0.051 0.054 | 0158 | 0.292] 0.405
N 25.0 1.00| o.0 0.0 -0.305 | -0.091 | -0.006 | 0.057 | 0.148 | 0.273 ] o.3m2
IS 25.0 2.50 ] o.0 -0.240 | -0.131 | -0.0m1 | -0.014 | 0.057 | o0.147 | o0.272 ] 0.3
’ , 25.0 5.00 [ -0.347 | -0.153 | -0.119 | -0.070 | -0.004 | 0.057 | 0.147 | o0.272 ]| o0.381
S 25.0 10.00 | -0.180 | -0.140 | -0.118 | -0.070 | -0.004 | 0.057 | o.147 | o.272] o.30
) 25.0 25.00 | -0.152 | -0.139 [ -0.11s | -0.070 | -0.004 | 0.057 | o.147 ] o0.272| o.3m
25.0 50.00 | -0.152 | -0.139 | -0.118 | -0.070 [ -0.004 | 0.057 | e.147 | o.272 ] o.3m1
25.0 | 100,00 -0.152 | -0.139 | -0.118 | -0.070 | -0.004 | 0.057 | 0.147 ] ea.272 | ou.3%1
50.0 0.05| o.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 v.0
50.0 0.10]| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50,0 0.50| 0.0 0.0 0.0 0.0 -0,653 | -0.075 | 0.143 | 0.343 ] 0.496
. 50.0 1.00{ 0.0 0.0 0.0 -0.249 | -0,061 0.054 | 0.158 | 0.292 | o0.405
50.0 2.50] 0.0 -1.000 | -0.215 | -0.080 | -0.004 | 0.057 | o0.147] o.273] 0.3
50.0 5.00] 0.0 -0.240 | -0.131 | -0.071 | -0.014 | 0.057 | 0.147 ] o0.272]| o.38
50,0 10.00 [ -0.347 | -0.153 | -0.118 | -0.070 | -0.013 | o0.057 | o0.147 | o0.272 o0.3M
. 50.0 25.00 | -0.165 | -0.140 | -0.118 | -0.070 | -0.014 | 0.057 | 0147 | o0.272] oe.381
50,0 50.00 | -0.152 | -0.139 | -0.118 | -0.070 | -0.014 | 0.057 | 0.147 ] o.212| 0.341
o 50,0 { 100.00 | -0.152 [ -0.139 | -0.118 | -0v.070 | -0.014 0.057 | 0.147 ] 0.272( o0.3%
100.0 0.05| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100.0 0.10] o.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100.0 0.50| o.0 0.0 0.0 0.0 0.0 0.0 -1.000 | -0.384 ]| o0.240
100.0 1.00f 0.0 0.0 0.0 0.0 -0.653 | -0.075 | 0.143 ] 0.343] 0.4
100.0 2.501 0.0 0.0 -1.000 | -0.157 | -0,031 0,057 | 0.153 | o.2s2] o0.392
100.0 5.00] 0.0 -1.000 { -0.216 | -0.080 | -0.004 | 0.057 | o0.147 | o.272] oe.3m
100.0 10.00f{ o.0 -0.240 | -0.131 | -0.0m1 | -0.004 | 0.057 | 0.147] o0.272] o.3m
100.0 25,00 -0.255 | -0.145 | -0.118 | -0.070 | -0.014 | 0.057 | o147 ] o.272] o.3m1
100.0 50,00} -0.165 | -0.140 | -0.118 | -0.070 | -0.014 | 0.057 { 0.147| o0.272| o0.3%1
100.0 | 100.00{ -0.152 | -0.13% | -0.218 | -0.070 [ -0.004 | 0.057 | 0.147 | o0.272| o0.381
250.0 0.06| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0
250.0 o.10f{ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
%0 0.50] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250.0 1.00{ o.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.000
250.0 2.50} o.0 0.0 0.0 0.0 -0,653 {-0,075 [ 0.143) o0.343} o0.496
250.0 5.00] o.0 0.0 0.0 -0.249 | -0.051 0.054 | 0.158] 0.292] o0.405
250.0 10.00| 0.0 0.0 -0.308 | -0,001 | -0.016 | 0.057 | o0.14x] 0.273] o.282
250.0 25.00] 0.0 -6.240 | -0,131 | -0.071 { -0.084 | 0.057 | o0.147] o0.2722] 0.2
250.0 50,001 -0.347] -0.153 | -0.219 | -¢6.070 } -0.014 | 0.057 | 0.147] o.272] o.3m1
250.0 | 100.00] -0.1%0 | -0.140 | -0.118 | -0.070 | ~0.004 | 0.057 | o0.147] o.272] o0.3%
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TABLE G-8 DEVIATIONS OF THE DISTANCES OF THE SUPERCOOLING FOR MODEL 1
FROM THOSE OF MODEL 3 (x:-'xa)/xa IN THE Ni-8a SYSTEM

G R/D R=283,1 | R=298.1] R=323.1] R=373.1| R=423.1 [R=473.1 | R=823.1 | R=573.1 | R=804.1
10.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.644 0,587 0.625
10,0 0.10 0.0 0.0 0.0 0.0 0.267 0,304 0. 356 0.422 0.471
0.50 0.0 0.059 0,062 0.102 0.150 0.205 0. 267 0.339 0. 391
1.00 0.0 0.032 0.049 0. 096 0.148 0.204 0.267 0.339 0,381
10.0 2.50 0.002 0.024 0.047 0.096 0.148 0.201 0.267 0,339 0.391
10.0 5.00 0.010 0.023 0.047 0.086 0.148 0,204 0. 267 0.339 0,391
10.0 10.00 0, 008 0.023 0,047 0,096 0.148 0,204 0.267 0.339 0.391 .
10.0 25.00 0, 009 0. 023 0,047 0. 086 0.118 0.204 0.287 0.339 0.391
10.0 50. 00 0. 008 0.023 0.047 0.096 0.148 0.204 0. 267 0.339 0.391

10.0 100,00 0. 009 0.023 0,047 0, 096 0.148 0.204 0. 267 0,339 0.391

SRt m e m o
o
ee
(-]

25.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25.0 0.10 0.0 0.0 0.0 0o 0.0 0.0 0.0 0.0 0.753
25.0 0.50 0.0 0.0 0.0 0.143 0.182 0,239 0. 256 0.355 0. 106
25.0 1.00 0.0 0.0 0.070 0.107 0.153 0.207 0. 268 0.340 0.392
25.0 2.50 0.0 0.031 0. 049 0, 096 0. 148 0.204 0. 267 9.339 0.39} ’
25.0 5.00 0.014 0,024 0. 047 0. 096 0.148 0.204 0. 267 0,339 0.391
25.0 10.00 0.010 0.023 0.047 0. 096 0.148 0,204 0. 267 4,339 0.391
25.0 25. 00 0. 009 0,023 0. 047 0. 096 0. 148 0.204 0, 247 0,339 0.391
25.0 50.00 0. 009 0.023 0. 047 0. 096 0. 148 8,204 0, 267 0,339 0.391
25.0 100.00 0.000 0.023 0. 47 0.096 0.148 0.204 0.267 0. 339 0.391
50.0 0.056 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 v.0
50.0 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50.0 .50 0.0 0.0 0.0 0.0 0.267 0.304 0. 356 0. 422 0.471
50.0 1.00 0.0 0.0 0.0 0.143 0.182 0,230 0. 2546 0.355 0. 405

E 50.0 2.50 0.0 0.059 0. 062 0.102 0.150 0.205 0.267 0,339 0.391
50.0 5.00 0.0 0.031 0. 49 0. 096 0.148 0.204 0.267 0.339 0. 391 \
50.0 10.00 0. 034 0,024 0. 047 0. 096 0.148 0.204 0.267 0.339 0.391
50.0 25.00 0.010 0.023 0,047 0. 096 0.1458 0.204 0.2¢7 0.339 0.391 T
50.0 50.00 0.009 0.023 0.047 0.096 0.148 0.204 0.267 0.339 0, 391

E 50.0 100.00 0. 009 0,023 0.047 0.096 0.148 0.204 0.267 0.339 0.391

e .

100.0 0. 05 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

;} 100.0 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .
. 100.0 .50 0,0 0.0 0.0 0.0 0.0 0.0 0. 644 a.5657 0. 625

100.0 1.00 0.0 0.0 0.0 0.0 0.267 0.304 0. 356 0.422 0.471

100.0 2.50 0.0 0.0 0.119 0.127 0.169 0,218 0.277 0. 346 0.397

000 5.00 0.0 0.059 0. 062 0.102 0.150 0.205 0.267 0. 339 0,391
E 100. 5 10.00 0.0 0.031 0.049 0.096 0. 14K 0,204 0.267 0,334 0, 391

100.0 25.00 0.012 0.024 0.047 0. 096 0.1448 0.204 0. 267 0. 339 0.391

100.0 50, M0 0.010 0.023 [ XY 0. 086 0.148 0.204 0.267 0,319 0.34]1

100.0 100, 60 U, Wy 0. 0238 0.047 0. 006 0.14% 0.204 0.267 0 139 0.

270.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250.0 0,10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 *
. 260, 0 0.50 0.0 0.0 0.0 0.0 0.0 0.0 .0 0.0 0.0
E 250,0 1.00 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.753
250.0 2.50 0.0 0.0 0.0 0.0 0.267 0.304 0. 356 0.422 0.47
250.0 5,00 0.0 0.0 0.9 0.143 0.182 0.230 0.246 0,355 0.403 ’ :
250.0 10. 00 0.0 0.0 0.070 0.107 0.153 0.207 0. 26N 0.340 0, 392 ’
’ 250.0 25.00 0,0 0.031 0.049 0, 096 0,144 0.204 0.267 0,339 0. 391
250.0 50, 00 0,014 0.024 0.047 0. 096 0. 148 0.204 0.267 0,339 ©. 391

250.0 100,00 0.010 0.023 0. 047 0,096 0, 148 0.204 0,267 0.33s A ]

=
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DISCUSSION

The segregation constant k. The solidus and the liquidus for the Ni-Sn system
display moderate curvatures (Hansen 1958). The errors involved for linear model

assumption are illustrated in Fig. G-2 through G-6.

Figures G-2 through G-6 show that, for the pseudo-linear model, the errors of

k, Gc and x are always approximately proportional to To’ which in turn is proportional
to the concentration of solute and zero for pure solvent. For the segregation coefficient,
k, the error is about 0.3%/degree K, with the rate of change slightly decreasing at
higher To' For Gc. the error is about 0.08%/degree K, with the rate of change slightly
increasing at higher To. For x, the error is about 0.11%/degree K, with the rate also
slightly increasing at. higher To. For the linear model, the error in k varies from

+85% to -55%, the rate of change being about 0.4%/degree K. The error in Gc is always
negative at about -16% to -13%, the average rate of increase being 0.01%/degree. The
error of x varies from -25% to +38% for To =0to To = 331K, the average rate of change

being about +0.19%/degree.

As expected, Table G-2 shows that kl and k2 are independent of the melt tem-~

perature, while k_ increases by over four times (from 0.156 to 0.6192) as the modified

3

temperature To increases from 0 K to 331K. Table G-3 shows that, compared to ks.

kl is overestimated by 86% at small temperature difference and underestimated by 53%

at To = 331° (eutectic point); and k2 is always underestimated, the amount being pro-

k, -k
portional to the modified temperature, To. A relationship between lk 3 and

3
kz-ks

ks
The critical temperature gradient. From Eq (11), (12), and (13), we see that

Gc » G o * and Gc in Table G-4 should be linearly proportional to R/D and ’1"0, and
1 2 3

Gc and Gc should also be proportional of (1-k). Table G-6 and Fig. G-3 show how
1 2

with To is shown in Fig. G-2.
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FRACTIONAL DEVIATION IN k

04

0.2
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MODEL 1 - THE
LINEAR MODEL
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PSEUDOLINEAR MODEL

&+
&
8
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'Fig. G-2 The Fractional Deviation of K va To for Model 1 and Model 2 from Model 3
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FRACTIONAL DEVIATION IN G

Gc‘ - GC3
MODEL 1 363 vs To, INTERFACE TEMP
0.1 r
L Gcy - Gea
MODEL 2 -—G—C-:;— v To
MODEL 2 - THE PSEUDOLINEAR MODEL o
o%': - -l : ”
0.1}
= MODEL 1 - THE LINEAR MODEL__/
o i >
__o 2 [l ] 1 1
300 400 800 800
To, K

Fig. G-3 Fractional Deviation of G vs To for Model 1 and Model 2 from Model 3
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Fig. G-4 Fractional Deviation in x vs To, for Model 1
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much ¢ aml G can deviate from U( . Specitically, (}L 's are always undercstimated
c ‘0 v L]
1 2 3 1
by about 157 but G 's are always slightly overestinated from zero up to 3.
¢

9
it

‘the distance of supercooling, When R D x ~5 in Eq 18), (19), and (20), then

- /
e RD x +1 -1. Equations (18), (19), and (20) can then be solved for x.
To
e Linear model: x, ——(1-k,) (21)
1 G 1
'rﬂ
e Pseudo-linear model; .\‘2 = 7:41--k2) (22)
. ro A12 A12 Blz B:2'.2
e Nuadratic model; Xg* G 1 T A §%A. T T A & (23)
“to22 220 o 22 T2

The values of x's in Eq (21), (22), and (23) correspond to the BC sectivn in Fig., (--6.

in this section, x is proportional to 'I‘O but inversely propurtional to G. The portion of
Fig. G-6 for R'D x< 5 corresponds to the AB section. If R'D is so small that G )Gc’
which corrcesponds to curve (1) in Fig. G-1, then there is no supercooling. This condition
of no supercooling continues as R/D increases, until G = Gc. If R D increases again,
then x continues to increcase, which corresponds to curves (3) and (4) in Fig. G~1.

Table G-7 and Fig. G-4 show that the fractional deviation of Xy defined as (xl-xs) ’xs,

is underestimated by about 3u at small values o1 modified melt temperatures T, but
overestimated by about 40% at large values of T. Table G-8 and Fig. G-5 show that the

fractional deviation of x_, definzd as (x_-x )/.\'3. is overestimated from 0 to 40’ as

2’ 2°3
the .nodified temperature increases from 0 to 331K, i.e., as the uelt temperature
decreases frora the melting point of pure Ni (1726K or 14550C) to the Ni-Sn eutectic

temperature (1397K or 1124°C).
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